DSpace DSpace Softwareについて English
 

GINMU >
01 奈良県立医科大学 >
012 大学院 >
0122 学位請求論文 >
01221 博士論文(医学) >
2024年度 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10564/4442

タイトル: Multidimensional prediction of continuous positive airway pressure adherence
その他のタイトル: CPAPアドヒアランスの多次元的予測
著者: Hamada, Eriko
Yamauchi, Motoo
Fujita, Yukio
Nishijima, Tsuguo
Ikegami, Azusa
Takaoka, Toshio
Shirahama, Ryutaro
Strohl, Kingman P.
Muro, Shigeo
キーワード: Cluster analysis
CPAP adherence
Obstructive sleep apnea
Prediction of CPAP adherence
発行日: 2024年10月
出版者: Elsevier
引用: Sleep medicine. 2024 Oct, vol.122, p.177-184
抄録: Objective: Continuous positive airway pressure (CPAP) is the standard treatment for obstructive sleep apnea (OSA). Unsatisfactory adherence to CPAP is an important clinical issue to resolve. Cluster analysis is a powerful tool to distinguish subgroups in a multidimensional fashion. This study aimed to investigate the use of cluster analysis for predicting CPAP adherence using clinical polysomnographic (PSG) parameters and patient characteristics. Patients/methods: Participants of this multicenter observational study were 1133 patients with OSA who were newly diagnosed and implemented CPAP. Ward’s method of cluster analysis was applied to in-laboratory diagnostic PSG parameters and patient characteristics. CPAP adherence was assessed during 90- and 365-day periods after CPAP initiation in each cluster. We adopted the Centers for Medicare and Medicaid Services criterion for CPAP adherence, i.e., CPAP use ≥4 h per night for 70 % or more of the observation period. Logistic regression analysis was performed to stratify clusters according to CPAP adherence. Results: Five clusters were identified through cluster analysis. Clustering was significantly associated with CPAP adherence at 90- and 365-day periods after CPAP initiation. Logistic regression revealed that the cluster with features including apnea predominant sleep-disordered breathing, high apnea-hypopnea index, and relatively older age demonstrated the highest CPAP adherence. Conclusion: Cluster analysis revealed hidden connections using patient characteristics and PSG parameters to successfully identify patients more likely to adhere to CPAP for 90 days and up to 365 days. When prescribing CPAP, it is possible to identify patients with OSA who are more likely to be non-adherent.
内容記述: 権利情報:© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
URI: http://hdl.handle.net/10564/4442
ISSN: 1878-5506
DOI: https://doi.org/10.1016/j.sleep.2024.08.018
学位授与番号: 24601甲第947号
学位授与年月日: 2025-03-14
学位名: 博士(医学)
出現コレクション:2024年度

このアイテムのファイル:

ファイル 記述 サイズフォーマット
02甲947本文の要旨.pdf甲947本文の要旨117 kBAdobe PDF見る/開く
03甲947審査要旨.pdf甲947審査要旨171.21 kBAdobe PDF見る/開く

このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。

 

Valid XHTML 1.0! Powered by DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - ご意見をお寄せください