GINMU >
01 奈良県立医科大学 >
012 大学院 >
0122 学位請求論文 >
01221 博士論文(医学) >
2020年度 >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10564/3909
|
Title: | GSK-3β mediates the effects of HNF-1β overexpression in ovarian clear cell carcinoma. |
Other Titles: | HNF-1β過剰発現を呈する卵巣明細胞癌においてGSK-3βは新たなシグナル伝達経路を介在する |
Authors: | Kawahara, Naoki Mizutani, Ayano Matsubara, Sho Takeda, Yoshinori Kobayashi, Hiroshi |
Keywords: | ovarian clear cell carcinoma glycogen synthase kinase-3β hepatocyte nuclear factor-1β nuclear factor-κB |
Issue Date: | Nov-2020 |
Publisher: | Spandidos |
Citation: | Experimental and therapeutic medicine Vol.20 No.5 Article No.122 (2020 Nov) |
Abstract: | Deubiquitinase USP28 is a target gene of the transcription factor HNF1 homeobox β (HNF-1β), which promotes the survival of ovarian clear cell carcinoma (OCCC) cell lines. However, the pharmacological inhibition of HNF-1β can cause several adverse effects as it is abundantly expressed in numerous organ systems, including the kidney, liver, pancreas and digestive tract. Therefore, small interfering RNA (siRNA) screening was performed in the current study to identify other potential downstream targets of the HNF-1β-mediated pathway. The results revealed that glycogen synthase kinase-3β (GSK-3β) may be a potential downstream target affecting cell viability. To further clarify the effects of GSK-3β, two human OCCC cell lines, TOV-21G (HNF-1β overexpressing line) and ES2 (HNF-1β negative) were transfected with siRNA targeting GSK-3β or control vectors. Loss-of-function studies using RNAi-mediated gene silencing indicated that HNF-1β facilitated GSK-3β expression, resulting in the loss of phosphorylated nuclear factor-κB (p-NFκB) and the reduction of TOV-21G cell proliferation. The cell proliferation assay also revealed that GSK-3β inhibitors rescued the effects of HNF-1β silencing on cell viability in a dose-dependent manner. Furthermore, the GSK-3β inhibitor, AR-A014418, effectively inhibited tumor cell proliferation in a xenograft mouse model. In conclusion and to the best of our knowledge, the current study was the first to determine that GSK-3β is a target gene of HNF-1β. In addition, the results of the present study revealed the novel HNF-1β-GSK-3β-p-NFκB pathway, occurring in response to DNA damage. Targeting this pathway may therefore represent a putative, novel, anticancer strategy in patients with OCCC. |
Description: | 博士(医学)・甲第785号・令和3年3月15日 Copyright: © Kawaharaet al. This is an open access article distributed under theterms of CreativeCommons Attribution License(https://creativecommons.org/licenses/by-nc-nd/4.0/). |
URI: | http://hdl.handle.net/10564/3909 |
ISSN: | 17920981 |
Academic Degrees and number: | 24601A785 |
Degree-granting date: | 2021-03-15 |
Degree name: | 博士(医学) |
Degree-granting institutions: | 奈良県立医科大学 |
Appears in Collections: | 2020年度
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|