1	Neovascularization from the Carotid Artery Lumen into the Carotid Plaque Confirmed			
2	by Contrast-Enhanced Ultrasound and Histology			
3				
4	Yuto Uchihara, MD, ^{*,†} Kozue Saito, PhD, ^{†,‡} Rie Motoyama, MD, ^{II} Hatsue Ishibashi-Ueda,			
5	PhD, [§] Eriko Yamaguchi, MD, [‡] Kinta Hatakeyama, PhD, [§] Akito Tanaka, MD, ^{*,†} Hiroharu			
6	Kataoka, PhD, [∥] Koji Iihara, PhD, [∥] Kazuma Sugie, PhD, [†] Masatoshi Koga, PhD, [*] Kazunori			
7	Toyoda, PhD, [*] Kazuyuki Nagatsuka, PhD, [*] Masafumi Ihara, PhD [‡]			
8				
9	* Departments of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center,			
10	Osaka, Japan; [†] Department of Neurology, Nara Medical University, Nara, Japan;			
11	[*] Departments of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan;			
12	$^{I\!I}$ Departments of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of			
13	Gerontology, Tokyo, Japan; [§] Departments of Pathology, National Cerebral and			
14	Cardiovascular Center, Osaka, Japan; ^{II} Departments of Neurosurgery, National Cerebral			
15	and Cardiovascular Center, Osaka, Japan;			
16				
17	Corresponding author:			
18	Yuto Uchihara, MD,			
19	National Cerebral and Cardiovascular Center,			
20	6-1 Kishibeshinmachi, Suita, Osaka 564-8565, Japan			

22	E-mail: yuchihara.729@outlook.com
23	Abstract
24	Background:
25	This study aimed to assess intraplaque neovessels focusing on neovascularization from the
26	vascular luminal side using contrast-enhanced ultrasound (CEUS) and demonstrate that this
27	contrast effect indicates that the neovessel is connected to the vessel lumen
28	histopathologically. We also investigated whether plaque vulnerability can be assessed more
29	accurately.
30	Methods:
31	We enrolled consecutive patients with internal carotid artery stenosis who underwent carotid
32	endarterectomy (CEA) and preoperatively examined CEUS with perflubutane of the carotid
33	arteries. We graded the contrast effect semi-quantitatively from the vascular luminal and
34	adventitial sides. We compared the contrast effect with the pathological findings, especially
35	the neovascularization of the CEA specimens.
36	Results:
37	In total, 68 carotid arterial atheromatous plaques (47 symptomatic) were analyzed.
38	Symptomatic plaques were significantly correlated with stronger contrast effects from the
39	luminal side than those from the adventitial side (p=0.0095). Microbubbles from the luminal

Tel. no.: +81-6-6170-1070

40	side appeared to flow mainly into the plaque shoulder. The contrast effect value for the plaque
41	shoulder and neovessel density were significantly correlated (ρ =0.35, p=0.031). Neovessel
42	density was significantly higher in symptomatic than in asymptomatic plaques
43	$(56.2\pm43.7/\text{mm}^2 \text{ and } 18.1\pm15.2/\text{mm}^2, \text{ respectively; } p<0.0001)$. Serial histological sections of
44	CEA specimens in a symptomatic plaque with a strong contrast effect from the luminal side
45	showed multiple neovessels fenestrated to the vessel lumen with endothelial cells, consistent
46	with the CEUS findings.
47	Conclusion:
48	CEUS can evaluate neovessels originating from the luminal side, histopathologically
49	confirmed in serial sections. Symptomatic vulnerable plaque is correlated more significantly
50	with intraplaque neovascularization from the luminal side than with neovascularization from
51	the adventitia.
52	Key words: Atherosclerosis, Neovascularization, Contrast-enhanced ultrasound
53	
54	
55	
56	
57	
58	

INTRODUCTION

60	Carotid artery plaques can cause artery-to-artery embolism and are important risk factors for
61	cerebral infarction. ¹ Plaques with a high risk of causing stroke are vulnerable plaques
62	characterized histopathologically by a large lipid/necrotic core, thin fibrous cap, marked
63	inflammation, and intraplaque hemorrhage. ^{2,3} Tissue hypoxia and chemical mediators
64	released from inflammatory cells recruited into the plaques induce neovessel formation and
65	proliferation in the plaques. ⁴ Neovessels are fragile, easily collapse, and are densely
66	distributed, particularly in the portion at both edges of a plaque, which is called the plaque
67	shoulder. ⁵ Shear stress is high at the plaque shoulder, which is susceptible to plaque rupture. ⁶
68	Intraplaque hemorrhage is associated with a rapid increase in plaque volume and fibrous cap
69	rupture and is recognized as a factor for plaque vulnerability. ⁷ Intraplaque hemorrhage is a
70	parameter for the qualitative diagnosis of plaques, and plaque imaging, mainly by T1-
71	weighted images such as Magnetization Prepared Rapid Acquisition Gradient Echo, is widely
72	used. ⁸ However, in some cases involving plaques that are mainly composed of a necrotic core
73	without intraplaque hemorrhage, plaque vulnerability may be difficult to evaluate.9
74	Ultrasound contrast agents do not permeate through blood vessels and are superior for
75	visualizing blood vessels as a vascular tracer. ^{10,11} In addition, over recent years, ultrasound
76	contrast agents have shown good stability in vivo and can trace microbubbles in real-time
77	without the collapse of the bubbles, even with a slow blood flow. ^{12,13} Accordingly, neovessels

78	in plaques can be visualized using contrast ultrasound. ¹⁴ We have previously reported that the
79	contrast effect is high at the plaque shoulder in symptomatic plaques and that neovascular
80	density is histopathologically high, which can be an indicator of plaque vulnerability. ¹⁵ Blood
81	flow into the plaques is thought to occur via vasa vasorum in the adventitial layer of blood
82	vessels. ¹⁶ However, when observing the microbubbles flowing into the plaques in real-time,
83	images of neovessels, delineated by a flow from the vessel lumen into the plaques, are
84	frequently found. Pathological neovascularization from the luminal side has been reported. ¹⁷
85	Neovascularization and intraplaque microvascular flow from the luminal side have been
86	observed using a new ultrasonographic technique. ^{18,19}
87	This study aimed to investigate the intraplaque neovessels originating from the adventitial and
88	luminal sides using contrast-enhanced ultrasound (CEUS) and their association with
89	symptoms. Additionally, we aimed to demonstrate that this contrast effect from the luminal
90	side indicated pathological neovessel connected to the vessel lumen.
91	
92	MATERIALS AND METHODS
93	Study population
94	We enrolled consecutive patients with internal carotid artery stenosis who underwent carotid
95	endarterectomy (CEA) and preoperative CEUS of the carotid arteries at the National Cerebral
96	and Cardiovascular Center between July 2010 and June 2014. This study was approved by the

97	Ethics Committee of the National Cerebral and Cardiovascular Center (M22-019). Written
98	informed consent was obtained from all patients prior to enrollment. The exclusion criterion
99	was a previous allergic reaction to the contrast medium, perflubutane (Sonazoid; GE
100	Healthcare, Tokyo, Japan), or eggs because the lipid-stabilized suspension of Sonazoid
101	contains egg yolk.
102	
103	Patient characteristics
104	Data on vascular risk, stenosis severity, and symptoms associated with previous ischemic
105	events on the ipsilateral side were collected. Symptomatic events were classified as transient
106	ischemic attack (TIA), amaurosis fugax, or cerebral infarction. TIA was defined as a sudden
107	focal neurological deficit that lasted <24 h. Amaurosis fugax was defined as a sudden,
108	temporary loss of vision in the ipsilateral eye. Cerebral infarction was defined as a sudden
109	focal neurological deficit that lasted for \geq 24 h. Vascular risk factors were defined as follows:
110	hypertension was defined as blood pressure \geq 140/90 mmHg and/or antihypertensive drug use;
111	diabetes mellitus was confirmed according to established guidelines and/or the use of
112	medication for diabetes mellitus; dyslipidemia was defined as a low-density lipoprotein level
113	of >3.6 mmol/L, high-density lipoprotein level of <1.0 mmol/L, triglyceride level of >3.8
114	mmol/L, and/or statin use; stenosis severity was assessed according to the North American
115	Symptomatic Carotid Endarterectomy Trial with computed tomographic angiography or

116	magnetic resonance (MR) angiography; symptomatic plaques were defined as plaques
117	associated with a history of TIA, cerebral infarction, or both on the ipsilateral side.
118	
119	CEUS image analysis
120	Carotid ultrasound examination was performed using a LOGIQ E9 ultrasound system (GE
121	Healthcare, Milwaukee, WI, USA) with a linear probe (4–9 MHz phased array transducer).
122	CEUS examinations were performed using phase-inversion mode to delineate the neovessels.
123	The mechanical index was 0.2–0.3. The image depth was adjusted to 4–5 cm, and the focus
124	position was 3-4 cm. Sonazoid (0.01 mL/kg body weight), a lipid-stabilized suspension of
125	perflubutane gas microbubbles, was injected as an intravenous bolus, followed by a 10-mL
126	saline flush through an antecubital vein. It was necessary to discriminate the true contrast
127	effect from artifacts, which appeared as bright echoes and moving microbubbles. We initiated
128	observation before the injection of the contrast agent and traced the microbubbles moving into
129	the plaques from the vascular luminal or adventitial side to eliminate artifacts. The appearance
130	of microbubbles was observed within 10-20 s following injection, and we observed the
131	plaques and recorded images as cine clips in the short and long axes. Intraplaque neovessels
132	were identified by the movement of echogenic reflectors of microbubbles within the plaque.
133	Images for evaluation were acquired for at least 5 min after injection of each bolus.

134	We recorded	images using t	he amplitude	e modulation	mode for	further	offline analy	vsis and the
								/

135 phase inversion mode for neovessel delineation.

136 Amounts of microbubbles flowing into plaques from both the vascular luminal and adventitial

- 137 sides were classified as semi-quantitative. The contrast effects were classified semi-
- 138 quantitatively on a scale from 0 to 3, where 0 = absent, 1 = small, 2 = large, and 3 = absent
- 139 extensive. Plaques were defined as follows: grade 0, plaques with no visible microbubbles;
- 140 grade 1, plaques with a small number of microbubbles; grade 3, plaques with several
- 141 microbubbles that were constantly seen, and grade 2, plaques with microbubbles between

142 grades 1 and 3.²⁰ Two observers (R.M. and K.S.) independently graded the cine clips offline

143 at different time points with no prior knowledge of the patient's clinical information.

- 144 Disagreements were resolved by consensus.
- 145 We measured the contrast grade from the luminal side (G_L) and that from the adventitial side

146 (G_A) in each plaque. The grade difference (G_D) was defined as G_L minus G_A , and we

147 compared G_D in symptomatic and asymptomatic plaques to assess which had a stronger

148 correlation with symptoms.

149 To quantitatively evaluate microbubbles flowing into the plaque shoulder as a contrast effect,

150 we recorded images using the amplitude modulation mode of the short axis of the narrowest

- 151 point of the stenosis before and after injection. We defined the four circled regions as those of
- 152 interest in the plaque core, plaque shoulders as lateral edges of the plaques, and the vessel

153	lumen. The size of ROIs was set to 2 mm (see Supplementary Figure 1A). Subsequently, a
154	time-intensity curve was generated, and enhanced intensity (EI) was calculated by subtracting
155	the baseline from peak intensities in the core (EI_C), the plaque shoulders (EI_S), and the vessel
156	lumen (EI _L) (see Supplementary Figure 1B). For further analysis, we used the larger EI_S of
157	the two shoulders ¹⁵ (Supplementary Figure 1).
158	
159	Histological analysis
160	For histological analysis, obtained carotid specimens by CEA were immersed immediately
161	in the fixative solution (HistoChoice; Amresco, Solon, OH, USA) for 24-48 h. After
162	decalcification in EDTA for 1 week, CEA specimens were cut into blocks by a 3-mm-thick
163	interval and embedded in paraffin. Thin slices, $5-\mu$ m-thick, were stained with hematoxylin-
164	eosin, Masson trichrome stains, and immunostaining of von Willebrand factor. Plaque
165	morphology was evaluated according to the American Heart Association (AHA) classification
166	of atherosclerotic plaques. ²¹
167	AHA classification is defined as follows: I to III, an early to moderate degree of
168	atherosclerosis; IV, atheroma with thick fibrous cap; V, calcified plaque; VI, atheroma with
169	large necrotic core and thin fibrous cap.
170	Histological examinations were performed by an experienced pathologist (H.I-U.) who was
171	blinded to the CEUS findings. Immunohistochemistry was performed using a monoclonal

172	antibody (diluted 1:50) against the endothelial cell marker von Willebrand factor (DAKO,
173	Japan) to stain neovessels in the plaque. Neovessel density (per square millimeter) was
174	counted in the shoulder of the narrowest point of the stenosis. We compared histological
175	neovessel density to the contrast effect, defined as EI_S , to validate the correlation of the
176	contrast effect. We prepared serial sections of a symptomatic plaque showing a high contrast
177	effect (grade 3: G_L 3, G_A 2, G_D +1) to demonstrate the fenestration of neovessels connected to
178	the blood vessel lumen.
179	
180	Statistical analysis
181	JMP 14.4.3 software (SAS Institute, Cary, NC, USA) was used for statistical analysis.
182	Descriptive characteristics of all variables are expressed as mean±standard deviation for
183	continuous variables and as percentages for categorical variables. Statistical analysis was
184	performed using the Wilcoxon rank sum test, χ^2 test, or Fisher's exact test. Correlation
185	analysis between EI and neovessel density was performed using Spearman's rho correlation.
186	A value of p<0.05 indicated statistical significance. The intra-rater agreement between the
187	two observers for the CEUS grade was calculated using the kappa statistic.
188	
189	RESULTS
190	Patients' characteristics

191	A total of 71 patients were enrolled; however, three patients were later excluded for the
192	following reasons: pathological tissue sample error (n=1) and difficulty in quantifying the
193	contrast effect (n=2). Finally, data on 68 patients were analyzed. The demographic data of the
194	study group are presented in Table 1.
195	Symptomatic plaques were found in 47 patients, and symptoms were classified as TIA (n=8;
196	17%), amaurosis fugax (n=8; 17%), and cerebral infarction (n=31; 66%).
197	
198	Correlation between contrast effect and symptomatic findings
199	The vessel lumen was clearly visualized using CEUS in all patients, and the plaques,
200	particularly the shoulders of the plaques, were enhanced by microbubbles filling the plaques
201	via neovessels mainly from the vessel lumen and/or via vasa vasorum from the adventitial
202	side, while the cores of plaques were minimally enhanced.
203	For measuring the agreement between the observers in the determination of the contrast
204	grade, the kappa statistic was obtained (kappa=0.77 for the luminal side; kappa=0.50 for the
205	adventitial side).
206	Contrast grades from both the adventitial and luminal sides were higher in symptomatic than
207	in asymptomatic plaques (p=0.03 and p<0.0001, respectively). G _D was greater in symptomatic
208	than in asymptomatic plaques (p= 0.0095), which indicated that contrast G _L was higher than
209	G _A in symptomatic plaques (Figure 1).

211 *Comparison with pathological images*

- According to the AHA classification of plaques, there were three cases of type V and 44 casesof type VI plaques in the symptomatic patients, and three cases of type V and 18 cases of type
- 214 VI plaques in the asymptomatic patients. Neovessel density was significantly higher in
- symptomatic than in asymptomatic plaques (56.2±43.7/mm² and 18.1±15.2/mm², respectively;
- 216 p<0.0001) (Table1). There were no type IV lesions.
- 217 The contrast effect value for the plaque shoulder, defined as EI_s, and neovessel density were 218 significantly correlated (ρ =0.35, p=0.031) (Figure 2).
- 219

220 Pathological evidence of fenestrated neovessels to the arterial lumen

221 In the prepared serial sections of the symptomatic plaques showing a high contrast effect 222 (grade 3) mainly from the vessel lumen (G_D +1: G_L 3, G_A 2), many neovessels were observed 223 in the fibrous cap in vulnerable plaque shoulders showing a large necrotic core or plaque 224 hemorrhage. Multiple neovessels approximately 50 to 100 µm in diameter were found, which 225 fenestrated to the lumen of blood vessels in serial sections and continued to the inside of the 226 plaque accompanied by endothelial cells from the arterial lumen. The sites matched the 227 neovessel images depicted linearly by CEUS, demonstrating that the CEUS findings and 228 histopathological images were consistent (Figure 3).

230 DISCUSSION 231 We reported that neovessels from the luminal side were more significantly contrasted than 232 the vasa vasorum from the adventitial side in symptomatic plaques and that multiple 233 neovessels fenestrated to the arterial lumen in serial sections. Furthermore, we demonstrated 234 matching between the contrast image and histopathological image. A previous report showed 235 that neovessels sprouting from the endothelium contributed to symptomatic plaque hemorrhage.^{17,22} However, this has not been previously demonstrated using both pathological 236 237 examination and CEUS in vivo. 238 Arteries are originally supplied and nourished by the vasa vasorum in the adventitia. 239 Nonetheless, as the intima thickens with the progression of arteriosclerosis, hypoxia induces 240 neovessels through mediators such as Hypoxia Inducible Factor (HIF)-1a and Vascular Endothelial Growth Factor (VEGF),²³ and some of these mediators have been 241 242 histopathologically shown to flow from the luminal side into coronary plaques.²⁴ The induced 243 neovessels are vulnerable and tend to collapse, resulting in intraplaque hemorrhage.²⁵ 244 Intraoperative evaluation of carotid plaques using indocyanine green video angiography 245 revealed that luminal neovessel sprouting and communication with the lumen were correlated 246 with artery-to-artery embolism, contributing to intraplaque hemorrhage more specifically than the vasa vasorum.²² Three-dimensional reconstruction of microvessels using CEA specimens 247

248	showed the microvasculature of carotid plaques with intraplaque hemorrhage, some of which
249	fenestrated to the arterial lumen. In this study, the neovessel connected to the lumen was also
250	covered with smooth muscle actin-positive cells (data not shown), indicating that they were
251	exposed to high internal pressure due to the blood flow from the arterial lumen. ¹⁷ Contrary to
252	the vasa vasorum, neovessels induced from the luminal side were directly affected by the
253	blood flow through the carotid artery.
254	A pathophysiological study on CEA specimens revealed that intimal capillaries were most
255	numerous in the plaque shoulder, and this was more prevalent in unstable plaques. ²⁶ We
256	showed that neovessels were mainly localized in the plaque shoulder from the luminal side in
257	vivo with real-time observation using CEUS, and this localization was more prevalent in
258	symptomatic plaques. The plaque shoulder is subjected to strong wall shear stress, and
259	neovessels from the luminal side, in particular, are at high risk for plaque rupture and are
260	involved in plaque vulnerability. ²⁷ With respect to the blood flow direction, plaque rupture is
261	often observed in the upstream shoulder with increased neovascularization and hemorrhage,
262	whereas endothelial erosion more frequently occurs downstream. The specific geometry of
263	plaques ruptured upstream increased the shear stress and pressure drop between the upstream
264	and downstream plaque shoulders. ²⁸ Over recent years, the vector flow mapping method,
265	which analyzes flow dynamics using ultrasound, has become available for use in blood
266	vessels, and wall shear stress is calculated to evaluate not only the blood flow velocity but

267	also the force applied to the blood vessels by the blood flow itself. ²⁹ Analysis of flow
268	dynamics may reveal the progression of arteriosclerosis in the future by assessing how
269	neovessels contribute to plaque vulnerability.
270	Ultrasound contrast agents are superior for visualizing blood vessels as vascular tracers, and
271	tracing microbubbles can delineate even very slow blood flow, visualizing neovessels and
272	small ulcers corresponding to fibrous cap rupture. Plaque ulceration is visible as a concavity
273	or column-like sea creek, and neovessels are delineated as a linear shape by the trace of the
274	microbubbles. However, in some plaques, swirling microbubbles that flow from the artery
275	lumen into the plaque as a line were documented histopathologically as plaque ruptures, ²⁷
276	which may complicate their differentiation. Although both plaque rupture and neovessels may
277	show plaque vulnerability, they are histopathologically different. The former shows a gap
278	between the ruptured edges of the fibrous cap, and the latter appears as a lumen lined with
279	endothelium that connects to the inside of the plaque. We characterized thin-line delineation
280	from the arterial lumen as neovessels. However, pathological evidence of the presence of
281	neovessels is challenging because it is difficult to identify the opening to the arterial lumen
282	when examining endothelial cells in CEA specimens. Horie et al. confirmed luminal
283	neovessel sprouting and communication with the lumen intraoperatively using indocyanine
284	green video angiography; however, how luminal neovessels communicate with the vessel
285	lumen remains unclear. ²²

286	Serial sections enable the precise assessment of the microvasculature. Moreover, three-
287	dimensional reconstruction using CEA specimens showed a complex network of
288	microvasculature, with fenestration of some neovessels to the arterial lumen. ¹⁷ To the best of
289	our knowledge, this is the first report showing that serial sections identified the thin-line
290	delineations of the CEUS image as multiple neovessels that fenestrated to the vessel lumen,
291	accompanied by endothelial cell lining, and extended into the plaque shoulder.
292	This study has several limitations. First, the participants were patients with internal carotid
293	artery stenosis who underwent CEA, and there was a selection bias, including several high-
294	risk patients. However, this study aimed to perform pathological verification, and we
295	considered it necessary to demonstrate in serial sections that neovessels originated from the
296	luminal side; thus, CEA cases were included.
297	Second, in this study, the contrast effect from the adventitial and intimal sides was
298	qualitatively evaluated. While the inter-rater agreement was applied, it was difficult to verify
299	whether neovascularization from the adventitial and luminal sides could be compared. In this
300	study, pathological verification was performed on the CEA specimens. It was difficult to
301	assess the vasa vasorum histopathologically from the adventitial side because they included
302	the intima and a part of the media but not the adventitia.
303	Finally, because CEUS is observed with low acoustic power, it is difficult to evaluate lesions
304	with calcification or deep lesions, and CEUS could not be assessed in some cases.

305	
306	CONCLUSION
307	CEUS allowed for the evaluation of neovessels originating from the luminal side, which
308	were confirmed histopathologically in serial sections of one symptomatic plaque. Moreover,
309	symptomatic plaques were more significantly correlated with neovessels originating from the
310	luminal side than those from the adventitia, reflected in higher G_L than G_A in symptomatic
311	plaques. It is important to evaluate plaque vulnerability using CEUS, considering not only the
312	intensity of the contrast effect but also the origins of the neovessels.
313	
314	CONFLICT OF INTEREST STATEMENT
315	Dr. Saito reports the lecture's fee from GE Healthcare LLC, Takeda, Sumitomo Pharma,
316	Daiichi Sankyo, Otsuka Pharmaceutical, and Bayer outside the submitted work. Dr. Kataoka
317	reports the research funding and lecture's fee from Eizai, Daiichi Sankyo, Otsuka
318	Pharmaceutical, CSL Behling, Abbott, Astellas, Bayer, JB, Kaneka, and Carl Zeiss outside
319	the submitted work. Dr. Iihara reports grant support from Chugai Pharmaceutical Company
320	Limited, Eisai Co., KM Biologics Company Limited, Nihon Medi-Physics, Nippon Zoki
321	Pharmaceutical, Otsuka Pharmaceutical Company Limited, and Idorsia Pharmaceuticals Japan
322	Limited outside the submitted work. Dr. Koga reports honoraria from Daiichi-Sankyo and
323	research support from Daiichi-Sankyo, Nippon Boehringer Ingelheim, and Shionogi, all of

324	which are outside of the submitted work. Dr. Toyoda reports the lecturer's fees from Daiichi
325	Sankyo, Otsuka, Novartis, Bayer, Bristol-Myers Squibb, and Abbott Medical outside the
326	submitted work. Dr. Ihara reports the lecturer's fees from Daiichi Sankyo and Eisai and grant
327	supports from Panasonic, GE Healthcare LLC, Bristol-Myers Squibb, and Shimadzu
328	Corporation outside the submitted work. The other authors report no conflicts of interest.
329	
330	Acknowledgments
331	We would like to thank Amy Kawai for the English language editing.
332	
333	Sources of Funding
334	This study was supported by the Intramural Research Fund (22-6-10) for Cardiovascular
335	Diseases of the National Cerebral and Cardiovascular Center.
336	
337	Data Availability Statement
338	Data will be made available on request.
339	
340	REFERENCES
341	1. U-King-Im JM, Young V, Gillard JH. Carotid-artery imaging in the diagnosis and
342	management of patients at risk of stroke. Lancet Neurol. 2009;8:569-580.

343	2.	Molloy KJ, Thompson MM, Jones JL, Schwalbe EC, Bell PRF, Naylor AR, Loftus IM.
344		Unstable carotid plaques exhibit raised matrix metalloproteinase-8 activity.
345		Circulation. 2004;110:337–343.
346	3.	Nighoghossian N, Derex L, Douek P. The vulnerable carotid artery plaque: current
347		imaging methods and new perspectives. Stroke. 2005;36:2764-2772.
348	4.	Sluimer JC, Gasc JM, van Wanroij JL, Kisters N, Groeneweg M, Sollewijn Gelpke
349		MD, Cleutjens JP, van den Akker LH, Corvol P, Wouters BG, et al. Hypoxia, Hypoxia-
350		Inducible transcription factor, and macrophages in human atherosclerotic plaques are
351		correlated with intraplaque angiogenesis. J. Am. Coll. Cardiol. 2008;51:1258-1265.
352	5.	Jeziorska M, Woolley DE. Neovascularization in early atherosclerotic lesions of human
353		carotid arteries: Its potential contribution to plaque development. Hum. Pathol.
354		1999;30:919–925.
355	6.	Yamada H, Yuri K, Sakata N. Correlation between stress/strain and the retention of
356		lipoproteins and rupture in atheromatous plaque of the human carotid artery: A finite
357		element study. J. Biomech. Sci. Eng. 2010;5:291-302.
358	7.	Michel JB, Virmani R, Arbustini E, Pasterkamp G. Intraplaque haemorrhages as the
359		trigger of plaque vulnerability. Eur. Heart J. 2011;32:1977–1985.
360	8.	Liu J, Balu N, Hippe DS, Ferguson MS, Martinez-Malo V, Demarco JK, Zhu DC, Ota
361		H, Sun J, Xu D, et al. Semi-automatic carotid intraplaque hemorrhage detection and

362		quantification on Magnetization-Prepared Rapid Acquisition Gradient-Echo (MP-
363		RAGE) with optimized threshold selection. J. Cardiovasc. Magn. Reson. 2016;18:1–9.
364	9.	Saito A, Sasaki M, Ogasawara K, Kobayashi M, Hitomi J, Narumi S, Ohba H,
365		Yamaguchi M, Kudo K, Terayama Y. Carotid plaque signal differences among four
366		kinds of T1-weighted magnetic resonance imaging techniques: A histopathological
367		correlation study. Neuroradiology. 2012;54:1187–1194.
368	10.	Vicenzini E, Giannoni MF, Puccinelli F, Ricciardi MC, Altieri M, Di Piero V, Gossetti
369		B, Valentini FB, Lenzi GL. Detection of carotid adventitial vasa vasorum and plaque
370		vascularization with ultrasound cadence contrast pulse sequencing technique and echo-
371		contrast agent. Stroke. 2007;38:2841-2843.
372	11.	Schinkel AFL, Kaspar M, Staub D. Contrast-enhanced ultrasound: clinical applications
373		in patients with atherosclerosis. Int. J. Cardiovasc. Imaging. 2016;32:35-48.
374	12.	Unnikrishnan S, Klibanov AL. Microbubbles as ultrasound contrast agents for
375		molecular imaging: Preparation and application. Am. J. Roentgenol. 2012;199:292-
376		299.
377	13.	Ignee A, Atkinson NSS, Schuessler G, Dietrich CF. Ultrasound contrast agents.
378		Endosc. Ultrasound. 2016;5:355–362.
379	14.	Shah F, Balan P, Weinberg M, Reddy V, Neems R, Feinstein M, Dainauskas J, Meyer
380		P, Goldin M, Feinstein SB. Contrast-enhanced ultrasound imaging of atherosclerotic

carotid plaque neovascularization: a new surrogate marker of atherosclerosis? Vasc.

- *Med.* 2007;12:291–7.
- 383 15. Saito K, Nagatsuka K, Ishibashi-Ueda H, Watanabe A, Kannki H, Iihara K. Contrast-
- 384 enhanced ultrasound for the evaluation of neovascularization in atherosclerotic carotid
 385 artery plaques. *Stroke*. 2014;45:3073–3075.
- 386 16. Fleiner M, Kummer M, Mirlacher M, Sauter G, Cathomas G, Krapf R, Biedermann
- 387 BC. Arterial neovascularization and inflammation in vulnerable patients: Early and late
- 388 signs of symptomatic atherosclerosis. *Circulation*. 2004;110:2843–2850.
- 389 17. Kurata M, Nose M, Shimazu Y, Aoba T, Kohada Y, Yorioka S, Suehiro S, Fukuoka E,
- 390 Matsumoto S, Watanabe H, et al. Microvasculature of carotid atheromatous plaques:
- 391 hemorrhagic plaques have dense microvessels with fenestrations to the arterial lumen.
- *J. Stroke Cerebrovasc. Dis.* 2014;23:1440–6.
- 393 18. Hoshino M, Shimizu T, Ogura H, Hagiwara Y, Takao N, Soga K, Usuki N, Moriya J,
- 394 Nakamura H, Hasegawa Y. Intraplaque microvascular flow signal in superb
- 395 microvascular imaging and magnetic resonance imaging carotid plaque imaging in
- 396 patients with atheromatous carotid artery stenosis. J. Stroke Cerebrovasc. Dis.
- **397** 2018;27:3529–3534.

398	19.	Zamani M, Skagen I	K, Scott H,	Lindberg B,	Russell D, Sk	ielland M.	Carotid pl	laque
		, 0	, , ,	<i>U i</i>		3		

- 399 neovascularization detected with superb microvascular imaging ultrasound without
- 400 using contrast media. *Stroke*. 2019;50:3121–3127.
- 401 20. Motoyama R, Saito K, Tonomura S, Ishibashi-Ueda H, Yamagami H, Kataoka H,
- 402 Morita Y, Uchihara Y, Iihara K, Takahashi JC, et al. Utility of complementary
- 403 magnetic resonance plaque imaging and contrast-enhanced ultrasound to detect carotid
- 404 vulnerable plaques. J. Am. Heart Assoc. 2019;8:1–8.
- 405 21. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME,
- 406 Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of
- 407 atherosclerotic lesions and a histological classification of atherosclerosis: A report from
- 408 the Committee on Vascular Lesions of the council on arteriosclerosis, American heart
- 409 association. *Circulation*. 1995;92:1355–1374.
- 410 22. Horie N, Morofuji Y, Morikawa M, Tateishi Y, Izumo T, Hayashi K, Tsujino A,
- 411 Nagata I. Communication of inwardly projecting neovessels with the lumen contributes
- 412 to symptomatic intraplaque hemorrhage in carotid artery stenosis. J. Neurosurg.
- **413** 2015;123:1125–1132.
- 414 23. Ogata A, Kawashima M, Wakamiya T, Nishihara M, Masuoka J, Nakahara Y, Ebashi
- 415 R, Inoue K, Takase Y, Irie H, et al. Carotid artery stenosis with a high-intensity signal

416		plaque on time-of-flight magnetic resonance angiography and association with
417		evidence of intraplaque hypoxia. J. Neurosurg. 2017;126:1873-1878.
418	24.	Kumamoto M, Nakashima Y. Intimal Neovascularization in Human Coronary
419		Atherosclerosis : Its Origin and Pathophysiological Significance. Hum Pathol.
420		1995;26:450–456.
421	25.	Shah BN, Gujral DM, Chahal NS, Harrington KJ, Nutting CM, Senior R. Plaque
422		neovascularization is increased in human carotid atherosclerosis related to prior neck
423		radiotherapy: A contrast-enhanced ultrasound study. JACC Cardiovasc. Imaging.
424		2016;9:668–675.
425	26.	Mofidi R, Crotty TB, McCarthy P, Sheehan SJ, Mehigan D, Keaveny T V. Association
426		between plaque instability, angiogenesis and symptomatic carotid occlusive disease.
427		Br. J. Surg. 2001;88:945–950.
428	27.	Lyu Q, Tian X, Ding Y, Yan Y, Huang Y, Zhou P, Hui P. Evaluation of carotid plaque
429		rupture and neovascularization by contrast-enhanced ultrasound imaging: An
430		exploratory study based on histopathology. Transl. Stroke Res. 2021;12:49-56.
431	28.	Cicha I, Wörner A, Urschel K, Beronov K, Goppelt-Struebe M, Verhoeven E, Daniel
432		WG, Garlichs CD. Carotid plaque vulnerability: A positive feedback between
433		hemodynamic and biochemical mechanisms. Stroke. 2011;42:3502-3510.

434	29. Saito K, Abe S, Kumamoto M,	Uchihara Y, Tanaka A, Sugie K, Ihara M, Koga M,	
435	Yamagami H. Blood flow visu	alization and wall shear stress measurement of carotid	
436	arteries using vascular vector f	ow mapping. Ultrasound Med. Biol. 2020;46:2692-	
437	2699.		
438			
439		Figure Legends	
440	Figure 1		
441	G_D , defined as G_L minus G_A , is shown	for each patient divided into symptomatic and	
442	asymptomatic plaques. G _D was greater in symptomatic plaques than in asymptomatic ones		
443	(p=0.0095).		
444			
445	Figure 2		
446	Correlation between EIs and neovascu	ılar density	
447	The contrast effect value for the plaque	e shoulder, defined as EIs, and neovessel density were	
448	significantly correlated (p=0.35, p=0.)31).	
449			
450	Figure 3		
451	Presentation of symptomatic plaque in	the internal carotid artery with strong contrast	
452	enhancement (grade 3: G_D +1, G_L 3, G_L	θ _A 2)	

453	A.	Previous plaque rupture with a large necrotic core and a little hemorrhage is shown by
454		Masson's trichrome stain.
455	B.	Multiple neovessels are stained using immunohistochemistry of the von Willebrand factor.
456		(high-power field of Figure 3A enclosed in a square)
457	C.	D. A serial immunostained section with von Willebrand factor shows an opening of neovessel
458		that flowed into the accompanied by endothelial cell lining from the vessel lumen (*).
459		Figure 3D is an enlarged figure of the square part of Figure 3C.
460	E.	Contrast-enhanced ultrasound shows that many microbubbles flowed from the vessel
461		lumen and were linearly delineated (arrows), which matched the neovessels that flowed
462		from the vessel lumen around the plaque shoulder (yellow parts pointed by arrows in
463		Figure 3F).
464	F.	A serial immunostained section with von Willebrand factor shows a neovessel opening
465		into the vessel lumen (arrowhead). Figure 3F corresponds to the square part of Figure 3E.
466		
467	Su	pplementary Figure1
468	Co	ntrast-enhanced ultrasound parameters.
469	A.	Four regions of interest (ROIs) were set (red: plaque core, blue and green: plaque shoulder,
470		yellow: vessel lumen) on the short axis of the narrowest point of the stenosis. The size of
471		ROIs was set to 2mm.

472	B. A time-intensity curve was generated, and enhanced intensity (EI) was calculated by
473	subtracting the baseline from peak intensities in the core (EI _C), plaque shoulder (EI _S), and
474	vessel lumen (EI _L). We used a larger EI _S of the two plaque shoulders for further analysis.
475	