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1 Abstract 

2 Objectives: Absolute or relative protein (P)C pathway abnormalities (PC-deficiency, PS-deficiency, 

3 antiphospholipid syndrome (APS), factor (F)V-abnormality, and high FVIII level) cause 

4 thrombophilia. Although screening assays for these thrombophilias are available, one utilizing clot 

5 waveform analysis (CWA) remains unknown. We aimed to establish a CWA-based screening assay 

6 to distinguish PC pathway abnormality-related thrombophilia. 

7 Methods: Samples were reacted with tissue factor (TF)/phospholipids and 

8 recombinant-thrombomodulin (rTM; optimal 20 nM), followed by CWA measurement. The 

9 peak-ratio (with/without rTM) of the first derivative curve of clot waveform was calculated. 

10 Results: The peak-ratio in healthy plasmas (n=35) was 0.36±0.13; hence, the cut-off value was set 

11 to 0.49. The peak-ratios in plasmas with PC-deficiency, PS-deficiency, high-FVIII (spiked 300 

12 IU/dL), and APS were higher than the cut-off values (0.79/0.97/0.50/0.93, respectively). 

13 PC-deficient plasma or PS-deficient plasma mixed with normal plasma (25/50/751100% PC or PS 

14 level) showed dose-dependent decreases in the peak-ratios (PC-deficient: 0.85/0.64/0.44/0.28; 

15 PS-deficient: 0.69/0.53/0.40/0.25), suggesting that the peak-ratio at S50% of PC or PS level 

16 exceeded the cut-off value. The peak-ratio in FV-deficiency with FV S25% was higher than the 

17 cut-off value. FV-deficient plasma spiked with 40 IU/dL rFV-R506Q (FVLeiden) or rFV-W1920R 

18 (FVNara) showed >90% peak-ratios. 

19 Conclusions: rTM-mediated TF-triggered CWA might be useful for screening PC pathway 

20 abnormality-related thrombophilia. 

21 
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1 Introduction 

2 Protein C (PC) and protein S (PS) are major vitamin K-dependent blood coagulation regulatory 

3 proteins. Activated PC (APC), which is generated by thrombin and thrombomodulin (TM) complex, 

4 exhibits anticoagulant activity by inactivating activated factor (F)V (FVa) and FVIIIa together with 

5 PS as a cofactor on the phospholipid membrane [1 -3]. This APC-mediated anticoagulant reaction, 

6 known as the "PC pathway regulation", is one of major disturbed anticoagulant mechanisms on 

7 thrombophilia [ 4,5]. 

8 

9 In patients with a suspected thrombophilia, each measurement of procoagulant and anticoagulant 

10 factors is essential but time-consuming to obtain the results. Considering the frequency of PC 

11 pathway abnormalities in thrombophilia patients, it is necessary to develop an easy-to-use assay to 

12 screen for these abnormalities in patients with suspected thrombophilia by assessing coagulation 

13 and anticoagulant regulatory function(s). The different assays for the detection of PC pathway 

14 abnormalities have been developed; representative assays include an activated partial 

15 thromboplastin time (aPTT)-based clotting time assay and a thrombin generation assay (TGA). 

16 ProC®Global (Dade-Behring, Marburg, Germany), one of the aPTT-based clotting time assay, can 

17 evaluate the ratio of clot time before and after the addition of snake venom (Protac ), which directly 

18 activates endogenous PC, to the plasma samples [6,7]. However, the clotting trigger is not a tissue 

19 factor (TF), and the measurement sensitivity seems to be lower than that ofHemosiL Thrombopath® 

20 (Instrumentation Laboratory, Bedford, MA) [8,9]. Thrombopath®, one of a TF-triggered TGA, is 

21 capable of assessing the endogenous function of APC induced by Protac, similar to the principle of 

22 ProC®GJobal [8]. This assay is costly, however, because of the use of chromogenic substrates, and 

23 has recently been discontinued. Common to both assays, the addition of Protac would not be able to 

24 detect upstream abnonnalities of the PC pathway, such as TM or prothrombin molecular 

25 abnormalities, showing the defective PC pathway activation [1 0,11]. It is necessary, therefore, to 

26 establish a novel and advanced easy-to-use assay. 

27 

28 Clot waveform analysis (CWA) is a recently developed global coagulation technique based on the 

29 continuous observation of changes in light transmittance that occur as fibrin is formed in plasma 

30 during the performance of routine clotting tests including aPTT and prothrombin time (PT) [12]. 

31 Recommendations on the standardization and clinical application of CWA from the Scientific and 

32 Standardization Committee of the International Society on Thrombosis and Haemostasis have been 

33 already published [12]. We have intensively analysed many congenital and acquired 
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1 coagulopathy-related disorders, such as haemophilia [13,14], coagulation factor inhibitors [15,16], 

2 anti-phospholipid antibody syndrome (APS) [16], disseminated intravascular coagulation [17], and 

3 Kawasaki disease [18]. 

4 

5 In addition, modified versions of the CWA such as the soluble TF-triggered CWA [19], aPTT/PT 

6 mixture-triggered CWA [14] and clot-fibrinolysis waveform analysis (CFWA) [20], have been 

7 developed. The aPTT/PT-CWA has been reported to be useful for monitoring hemophilia patients 

8 with FVIII inhibitor receiving emicizumab prophylaxis [14], and the results of CFWA have 

9 suggested that hyper-fibrinolysis could be evaluated by a modified CWA that incorporates tissue 

10 type plasminogen activator [20]. 

11 

12 In the present study, we performed CWA by triggering TF and phospholipid vesicles (PL) instead of 

13 aPTT. Furthermore, the addition of recombinant TM (rTM) to the sample plasmas drives the 

14 APC-mediated PC pathway function via the thrombin-TM complex [21,22], resulting in a marked 

15 suppression of the coagulation reaction. In contrast, if the PC pathway function does not function 

16 approximately, even the addition of rTM does not suppress the coagulation reaction. Using this 

17 principle, we attempted to establish a novel assay to evaluate PC pathway abnormality-related 

18 thrombophilia by comparing the clot waveforms of TF-triggered CWA in the absence and presence 

19 ofrTM. 

20 

21 Materials and Methods 

22 This study was approved by the Medical Research Ethics Committee of Nara Medical University 

23 (No. 2503), and blood samples were collected after obtaining informed consent in accordance with 

24 the ethical guidelines of our university. 

25 

26 Reagents- Recombinant thrombomodulin (rTM, Recomodulin®, Asahi-Kasei Pharma Corp., Tokyo, 

27 Japan), recombinant human tissue factor (rTF; Innovin®, Dade), rFVIII preparation (Advate®, 

28 Takeda Pharmaceutical Company Limited, Tokyo), Thrombocheck PT-SLA ® (Sysmex Cop. Kobe, 

29 Japan), PS-deficiency (-def) and PC-def plasma (immune-depleted, activity <1 %, Affinity 

30 Biologicals Inc. ON, Canada), APS, FV-def, and FVIII-def plasma (patient-derived, activity <1 %, 

31 George King Inc. Overland Park, KS), and human plasma-derived FV (Haematologic Technologies 

32 Inc., Essex Junction, VT) were obtained from the indicated vendors. Phospholipid (PL) vesicles 

33 containing 10% phosphatidylserine, 60% phosphatidylcholine, and 30% phosphatidylethanolamine 
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1 were prepared as previously described [23]. 

2 

3 Plasma samples- Whole blood samples from patients with PS-def (n=2), PC-def (n=l), and APS 

4 (n=2, LA positive), and healthy individuals (n=35) in our hospital were collected into plastic tubes 

5 containing 3.2% sodium citrate at a ratio of 9:1 (Fuso Pharmaceutical Industries, Osaka, Japan) or 

6 into tubes containing hirudin (final concentration: f.c. 25 J.lg/mL, Roche Diagnostics, Rotkreuz, 

7 Switzerland). Inclusion criteria was defined as follows; i) patients who had been diagnosed already 

8 in our hospital, ii) patients with no other complicated disease, iii) patients who had taken no 

9 medication that might have influenced platelets or coagulation function two weeks prior to blood 

10 sampling. Platelet-poor plasma was separated by centrifugation of the citrated whole blood for 10 

11 minutes at 1,500 g. All plasma samples were stored at -80°C and thawed at 37°C immediately prior 

12 to assays. Pooled normal plasma (PNP) samples were mixed with individual plasma samples 

13 (n=20). 

14 

15 Construction, expression, and purification of rFV mutants - As the PC pathway-related 

16 thrombosis, FV abnormality is one of the famous congenital thrombophilia [24]. FVLeiden (R506Q) is 

17 a well-known congenital thrombophilia in Caucasian [24], and FVNara (Rl 920W) is a recently 

18 reported congenital thrombophilia in Japan [25]. These rFV mutants needed to be created, since the 

19 untreated plasma samples could not be obtained from patients carrying these mutations. To solve 

20 this, the piggyBac transposon system was used to express FV wild-type (WT) and mutants, as 

21 described previously [26]. rFV-WT and mutated FV-R506Q and FV-Wl920R were stably expressed 

22 in HEK293T cells and purified [26]. The resultant FV forms were typically >90% in purity as 

23 determined by SDS polyacrylamide gel electrophoresis with albumin being the major contaminant 

24 (data not shown). The FV abnormality model plasma was prepared by adding each of rFV 

25 preparations (WT, R506Q, and R1920W mutations) in vitro to the commercial FV-deficient plasma. 

26 

27 TM-mediated clot waveform analysis (CWA)- CWA [12,13] was performed on an ACL-TOP® 

28 instrument (Instrumental Laboratory) using an rTF-trigger reagent together with rTM. For the 

29 procedure, 90 J.!L plasma sample was mixed with 10 J.!L rTM or buffer. This mixture sample was 

30 preincubated for 3 min with 30 J.!L of trigger reagent of rTF and PL (f.c. 1 pM and 12 J.!M, 

31 respectively), prior to the addition of 30 J.!L CaCh (1 0 mM) to initiate coagulation. The automated 

32 coagulation analyser detected the intensity of absorbance, and the resulting clot reaction curves 

33 were computer-processed using the commercial kinetic algorithm provided by the manufacturer. 
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1 The first derivative of the clot reaction curve identified the coagulation velocity at each time point. 

2 The 'peak value' of the first derivative curve was calculated as an indicator of coagulation potential 

3 achieved. The ratio (with rTM/without rTM) of the peak parameter with and without the addition of 

4 rTM (termed as the peak ratio) was expressed as an evaluation of the PC pathway potential. 

5 

6 Data analyses - Experiments were performed at least three times, and the mean, median, and 

7 standard deviation (SD) are shown. Since the distribution of test results in some plasma samples 

8 was asymmetrical and did not show a normal distribution, Mann-Whitney U-test or Kruskal-Wallis 

9 test was used to compare the results between different plasma samples. Statistical significance was 

10 set at P <0.05. The statistical software 'EZR' (Easy R) was used for statistical calculations. 

11 

12 Results 

13 rTM-mediated CWA for detecting the PC pathway abnormality and the cut-off value of peak 

14 ratio 

15 We first performed the rTM-mediated IF-triggered CWA using PNP, and the clot reaction curves 

16 and first derivative curves with and without rTM are illustrated in Figure 1. The optimal 

17 concentration of rTF and PL were determined as described in Methods, based on the results by the 

18 addition of various concentrations of rTF (0.5-5 pM) or PL (2-40 11M) (Supplemental Figure 1), 

19 together with earlier reports on the measurement conditions on TGA [17, 18] and CWA [27], to be 

20 the maximum effect of rTM (as described below; peak ratio ~0.35). The addition of rTM 

21 significantly decreased the maximum absorbance of the clot reaction curve and the peak height 

22 (peak) of the first derivative curve. Under these conditions, fibrin formation was markedly 

23 suppressed when rTM was added, resulting in a marked decrease in the maximum absorbance and 

24 the peak value of the second derivative curve (data not shown). As a result, since the reaction curve 

25 was not sufficiently drawn, the evaluation of second derivative curve was precluded in the present 

26 study. 

27 

28 To examine the optimal concentration ofrTM in rTM-mediated TF-triggered CWA, the peak values 

29 with various concentrations of rTM, and the "peak ratio" as (the peak with rTM)/(peak without 

30 rTM) were used (Figure 2A). The peak value decreased in a rTM dose-dependent manner. Likewise, 

31 the peak ratio decreased with a decline in the peak values. From the obtained result, since the peak 

32 ratio with rTM at 20 nM ( ~0.35) in the PNP sample was low enough to detect abnormal PC pathway 

33 function, by referring to the cut-off values of other conventional evaluation methods [8], 20 nM 
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1 rTM was used in subsequent studies. 

2 

3 The intra-assay coefficient of variation (CV) was calculated using five replicate PNP samples. All 

4 parameters of peak value ( -rTM), peak value ( +rTM), and peak ratio had good intra-assay %CV s of 

5 <1 0% (2.1 %, 8.2%, and 8.6%, respectively). In addition, inter-assay %CV s were calculated using a 

6 single sample measured six times on different days, resulting in good inter-assay %CVs of <15% 

7 (2.6%, 11.6%, and 1 0.8%, respectively). 

8 

9 We performed rTM-mediated CWA using individual plasma from 35 healthy controls and confirmed 

10 the normal range of peak value and peak ratio (Figure 2B). The peak values without and with rTM, 

11 and the peak ratio in healthy plasma samples (n=35) was I 09.2±21.6 mAbs/s, 40.4± 19.5 mAbs/s, 

12 and 0.36±0.13, respectively. In the Thrombopath® assay using the ACL-TOPT", Toulon et al. 9 

13 determined the mean±SD value obtained from 30 healthy control samples as a cut-off value for the 

14 parameter. The instruction manual of Thrombopath® describes that the mean±SD of approximately 

15 20 cases of normal plasma could be set as the cut-off value. Therefore, we determined the cut-off 

16 value of the peak ratio to 0.49, based on the mean+SD of healthy plasma samples. Therefore, in the 

17 rTM-mediated CWA, the plasma sample with a peak ratio >0.49 was considered to possess the 

18 possibility of a PC pathway abnormality because of the lack of anticoagulant effect by the presence 

19 ofrTM. 

20 

21 rTM-mediated CWA on various commercial plasmas with the PC pathway abnormality 

22 First, commercial plasma samples with PS-def (n=5), PC-def (n=4), FVIII-def spiked by high 

23 rFVIII level (n=4 ), and APS (n=2), which are the representative thrombophilia samples that could 

24 exhibit PC pathway abnormalities, were assessed by rTM-mediated CWA. The median peak values 

25 prior to the addition of rTM were significantly higher in PS-def (185.0 mAbs/s, p=0.005) and 

26 PC-def (174.0 mAbs/s, p=0.02) than in the healthy controls (1 09.2 mAbs/s). The median peak value 

27 (141.0 mAbs/s) in high-FVIII plasma that was prepared by the addition of rFVIII (300 IU/dL) to 

28 FVIII-def plasma was higher than that in FVIIl-def plasma (92.6 mAbs/s), but not significantly 

29 different from that in healthy controls. The median peak value in APS (91.4 mAbs/s) was similar to 

30 that in the healthy controls (Figure 3). 

31 

32 The addition of rTM resulted in a slight decrease in the peak value in plasmas with PS-def or 

33 PC-def. The peak ratios in all samples by the addition of rTM (0.98±0.02; p=0.005 and 0.79±0.08; 
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1 p=0.02, respectively) were significantly higher than the cut-off value. The peak ratio in FVIII-def 

2 plasma was 0.32±0.05, suggesting no significant difference from that in healthy controls. In those 

3 reconstituted with high levels of FVIII, however, some samples (highest value: 0.51) exceeded the 

4 cut-off value, but the median value was lower than the cut-off value. APS plasma has also been 

5 reported to exhibit PC pathway abnormalities [28-31 ], and the peak ratio in APS was high 

6 (0.98±0.07) and exceeded the cut-off value in all samples (Figure 3). 

7 

8 Effect of PC, PS, and FVIII on the peak ratio in rTM-mediated CWA 

9 Next, we examined the impact of PC, PS, and FVIII on the peak ratio in an rTM-mediated CWA. 

10 PS-def or PC-def plasmas were mixed with PNP, and the PS or PC concentrations were adjusted to 

11 0, 25, 50, 75, and 100% (PNP), followed by the rTM-mediated CWA measurement. Plasmas with 

12 PS or PC concentrations of 50% or less were beyond the cut-off value in the peak ratio (Figure 4A, 

13 4B), suggesting that rTM-mediated CWA under the present conditions was able to distinguish the 

14 plasma samples with PS or PC concentrations below 50% and normal controls. In contrast, in 

15 FVIII-def plasma added rFVIII (0, 37.5, 75, 150, and 300 IU/dL), the peak ratio tended to increase 

16 in a FVIII dose-dependent manner (0.38±0.07, 0.36±0.05, 0.38±0.07, and 0.46±0.05, respectively), 

17 but none of the median values exceeded the cut-off value (Figure 4C). 

18 

19 rTM-mediated CWA in our patients with PS-def, PC-def, and APS 

20 To further evaluate this screening assay, rTM-mediated CWA using plasma samples (PS-def, PC-def, 

21 and APS) from untreated patients with thrombophilia who visited our hospital was performed 

22 (Figure 5). We did not examine high-FVIII samples because they were not available in clinical 

23 practice. The peak ratios in the plasmas with two PS-def (PS activity <10%, 30%), PC-def (PC 

24 activity 60%), and two APS were 0.95, 0.73, 0.31, 0.81, and 0.74, respectively, which supports the 

25 validity of this assay. 

26 

27 rTM-mediated CWA in FV abnormality 

28 FV abnormality is a representative coagulation disorder that exhibits PC pathway abnormalities. 

29 FV-R506Q (FVLeicten), which shows APC resistance, is one of the most common types of 

30 thrombophilia in the USA and Europe [24]. FV-Wl920R (FVNara) is also a FV abnormality reported 

31 by our group in Japan [25]. Therefore, we examined whether rTM-mediated CWA could detect 

32 these FV abnormalities. 

33 
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1 We performed rTM-mediated CWA using FV-deficient plasma samples containing 6.25, 25, 100, 

2 and 400 IU/dL of commercial plasma-derived (pd-)FV preparations (Figure 6A). Samples with 0% 

3 FV activity showed coagulation potential because of a complete lack of FV procoagulant function. 

4 In rTM-mediated CWA, coagulation potential was obtained at FV 6.25% and above, and FV 

5 concentration-dependent decrease in peak value because of an anticoagulant effect of FV was 

6 observed, resulting in dose-dependent decreases in the peak ratio (0.67, 0.56, 0.39, and 0.34, 

7 respectively). 

8 

9 Next, we performed rTM-mediated CWA by adding rFV (WT, R506Q, and Wl920R) expressed in 

10 HEK-293 cells to FV-defplasma [26]. Preliminary experiments confirmed that the peak values and 

11 peak ratio values in FV-def plasma with 0.5 IU/mL of pd-FV and FV-WT were similar (peak 

12 without rTM; 130.0 and 128.3 mAbs/s, peak ratio; 0.43 and 0.45, respectively). The peak values and 

13 peak ratios in FV-defwith 0.4 IU/ml, FV-WT, FV-R506Q, and FV-W1920R were 132.3, 126.0, and 

14 140.7 mAbs/s, respectively, and 0.47, 0.91, and 0.92, respectively. The peak ratios in FV-R506Q 

15 and FV-W 1920R were much higher than the cut-off value, and both FV mutants suggested a similar 

16 level of rTM-induced APC resistance (Figure 6B). 

17 

18 Discussion 

19 Screening assays to detect PC pathway abnormalities, a major cause of thrombophilia, have been 

20 developed. An aPTT-based clotting time assay, such as ProC®Global, reflects only a single 

21 parameter such as the clotting time [6,7], whereas TGA and CWA reflect the entire process of 

22 thrombin and clot formation and obtain many parameters in addition to clotting time [32]. TGA, a 

23 widely used assay to evaluate PC pathway impairment, evaluates global coagulation potential based 

24 on thrombin generation but not total fibrin formation [8,9]. Thrombopath® was used to assess the 

25 endogenous function of APC induced by protac but was discontinued. This assay is technically 

26 demanding and is generally restricted to expert laboratories, and thrombin substrate for thrombin 

27 generation is needed. While, CWA is developed as an automated, global coagulation technique for 

28 use in routine clinical laboratories during aPTT/PT measurement, thereby being an easy-to-use 

29 assay without the substrate use [32]. The clinical applications ofCWA for patients with coagulation 

30 disorders are available. In the present study, we successfully established a novel assay to evaluate 

31 PC pathway abnormalities using rTM-mediated CWA by the TF/PL-trigger. This was based on the 

32 physiological activation of endogenous PC by adding rTM [21] and on the comprehensive 

33 coagulation function potentials, not clotting time, by analysing real-time clot waveforms [12,13,32]. 
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1 

2 Human soluble rTM (Recomodulin®) was developed as an anticoagulant agent and is clinically used 

3 as an anti-thrombotic and/or anti-inflammatory drug [22]. Similar to thrombomodulin, rTM has two 

4 modes of thrombin-inhibitory action, direct or indirect, and the latter is via PC activation [22]. 

5 However, rTM concentration that is required for direct thrombin inhibition is fifty-fold higher than 

6 that for PC activation [22], and the plasma concentration of rTM in clinical settings ( 4. 7 to 22 nM) 

7 [33], does not reach the level of the direct function. Therefore, we assumed that the main 

8 anticoagulation effects ofrTM in this assay were achieved by PC activation. In rTM-mediated CWA, 

9 fibrin formation was depressed in a rTM dose-dependent manner and the peak value was decreased, 

10 but the peak ratio was higher in thrombophilia related to the PC pathway abnormality. 

11 

12 Patients with PC-def and PS-def exhibited absolute APC resistance. An earlier report usmg 

13 Thrombopath® [8] demonstrated that the Protac-induced coagulation inhibitor percentages (PICI%) 

14 in plasmas with PS-def or PC-def were significantly lower than those of the healthy controls, 

15 suggesting the usefulness of Thrombopath® to identifY PC pathway abnormalities [8]. The 

16 rTM-mediated CWA similarly revealed that the peak values in plasmas with PS-def and PC-def 

17 were higher than those in normal controls, and the peak ratios were significantly higher, reflecting 

18 the abnormal PC pathway, and exceeding the cut-off value in all samples with PC-def and PS-def. 

19 

20 High levels of FVIII:C (> 150 IU/dL) are reported to be risk factors for thrombosis [34,35]. Toulon 

21 et al. [8] reported that the PICI% value in plasmas with high levels of FVIU:C (1 00 to 300 IU/dL, 

22 especially >250 JU/dL) was decreased by Thrombopath®, indicative of the relative PC pathway 

23 abnormality. In our results, the rTM-mediated CWA revealed no significant difference from 

24 FVIII-def plasma spiked with FVJII:C 300 JU/dL compared to the controls, but there were some 

25 samples that exceeded the cut-off value, suggesting that high FVIII levels appear to be assessed as a 

26 relatively PC pathway abnormality. 

27 

28 There are increasing reports of APS patients exhibiting APC resistance, and APC resistance seems 

29 to be associated with thrombogenicity in APS patients [30,31]. The effect of antiphospholipid 

30 antibodies (aPL antibodies) found in APS patients on the PC pathway involves differences in aPL 

31 subtypes [31]. An anti-~2GPI, which exhibits LA, competes with APC for phospholipid binding, 

32 thereby conferring APC resistance [36]. Antibodies against PC and PS exhibit APC resistance by 

33 reducing plasma PC and PS levels [37,38], and anti-prothrombin antibodies also exhibit APC 
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1 resistance by reducing plasma prothrombin levels [39]. Katayama et al. [ 40] reported that the peak 

2 value of the velocity curve decreased and the time to peak velocity curve was prolonged in 

3 LA-positive plasma in the aPTT-based assay using ACL-TOP®. In the present study, the peak value 

4 in APS was lower and the time to reach peak value was prolonged (data not shown), although no 

5 significant difference was observed, possibly because of the small number of samples. However, the 

6 peak ratio exceeded the cut-off value in all APS samples, showing trends similar to those of 

7 previous reports [8,28,29]. 

8 

9 Activated FV (FVa) and FXa promote thrombin generation (procoagulant function). FVa is 

10 proteolytically cleaved by APC at three sites, including R506, to form inactivated FVa, which loses 

11 its procoagulant activity [ 41]. In contrast, when FV is cleaved at R506 by APC, it shows 

12 anticoagulant activity as a cofactor of APC (anticoagulant function) [42]. FVLeiden (R506Q) shows a 

13 thrombotic tendency because of APC resistance [43]. Some FV abnormalities with other mutations 

14 showing APC resistance have been recently reported [25,44]. The rTM-mediated CWAs could 

15 observe the balancing of procoagulant and anticoagulant potential that was affected by FV:C levels. 

16 In addition, a representative FV-R506Q and FV-Wl920R showed high peak ratios, again confirming 

17 the APC resistance. The rTM-mediated CWA is very useful for detecting FV abnormalities with 

18 APC resistance. 

19 

20 There are some limitations to the present study. Similar to a previous report in the ProC®Global 

21 study [7], the high peak ratio in this assay may reflect not only the absolute defective PC pathway 

22 function, but also the relative abnormalities of the PC pathway because of the increased coagulation 

23 potential between the balancing of coagulation-anticoagulation system. For example, a high 

24 fibrinogen level (>5 giL) might be associated with a 4-fold risk of thrombosis [45], and 

25 hyperprothrombinemia is a potential APC inhibitor [ 46]. In the present study, we did not measure 

26 fibrinogen or prothrombin concentrations in these plasma samples. The addition of rTM instead of 

27 Protac has the potential to detect thrombophilia because of PC or prothrombin molecular 

28 abnormality showing TM resistance [11], but it would be difficult to detect abnormalities in 

29 endogenous TM itself [1 0]. 

30 

31 In summary, rTM-mediated CWA, based on global coagulation function by conventional PT clotting 

32 assay, could be a candidate for an easy and quick-to-use assay to screen for representative 

33 thrombophilia related to PC pathway abnormalities in clinical practices, instead of the measurement 
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1 of APC resistance and PC/PS activity with coagulometric and/or chromogenic methods. Further 

2 investigation with a large number of patients with thrombophilia is needed to clarify the sensitivity 

3 and specificity of the current assay. 
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1 Figure Legends 

2 Figure 1. Recombinant thrombomodulin-mediated tissue factor-triggered clot waveform 

3 analysis 

4 Pooled normal plasma was incubated with recombinant tissue factor (rTF) and phospholipid (PL) 

5 vesicles, followed by the addition of CaCb together with recombinant thrombomodulin (rTM) as 

6 described in the Methods. Changes in absorbance were recorded over time during the clot reaction 

7 (clot reaction curve). The curve from the first derivative (dT/dt) of the obtained clot reaction curve 

8 shows the coagulation velocity. The peak values of the first derivative curve with and without rTM 

9 are shown, and the peak ratio was calculated as the peak value with rTM/peak value without rTM. 

10 

11 Figure 2. rTM dose-dependent reaction and set of cut-off value on the rTM-mediated CWA 

12 (A) rTM dose-dependent reaction. Pooled normal plasma (PNP) was incubated with rTF (1 pM) 

13 and PL vesicles (12 1-1M), followed by the addition of CaCb together with rTM (0-40 nM). The peak 

14 value without (open square) and with (closed square) rTM was observed and the peak ratio (closed 

15 circle) was calculated as described in Methods. 

16 (B) Cut-off value of peak ratio in healthy control plasmas. PNP and healthy individual plasmas 

17 (n=35) were incubated with rTF (1 pM) and PL vesicles (12 1-1M), followed by the addition ofCaCh 

18 without or with rTM (20 nM). The peak value without (white column) and with (gray column) rTM 

19 was shown and the peak ratio (closed circle) was calculated. A cut-off value (0.49) was set to the 

20 +I SD of mean value in healthy controls. 

21 

22 Figure 3. rTM-mediated CWA using various types of commercial plasmas with PC pathway 

23 abnormality 

24 Commercial plasma with PS deficiency (PS-def), PC-def, FVIII-def, FVlll-def spiked with FVIII 

25 (300 IU/dL), and APS were incubated with rTF (1 pM) and PL vesicles (12 1-1M), followed by the 

26 addition of CaCh with or without rTM (20 nM). The peak value without (white column) and with 

27 (gray column) rTM is shown, and the peak ratio (closed circle) was calculated. A cut-off value of 

28 0.49 was set to + 1 SD of the mean value in healthy controls. 

29 

30 Figure 4. Impacts ofPS, PC, and FVIII concentrations on rTM-mediated CWA 

31 PS-def plasma (A) and PC-def plasma (B) were mixed with pooled normal plasma (PNP) to adjust 

32 to the final concentrations of 0, 25, 50, 75, and 100% of PS and PC levels, respectively. FVIII-def 

33 plasma (C) was mixed with rFVIJJ (0-300 IU/dL). The mixture samples were incubated with rTF (1 

18 



1 pM) and PL vesicles (12 J..LM), followed by assessment of rTM-mediated CWA. The peak values 

2 without (white column) and with (gray column) rTM (20 nM) were obtained, and the peak ratio 

3 (closed circle) was calculated. The dotted line shows the cut-off value (0.49) for the normal 

4 controls. 

5 

6 Figure 5. rTM-mediated CWA on the patient-derived plasmas with PC pathway abnormality 

7 Two patient-derived PS-def plasmas (PS activity <10% and 30%), patient-derived PC-def plasma 

8 (PC activity 60%), and plasma samples from two patients with APS (LA positive) were incubated 

9 with rTF (1 pM) and PL vesicles (12 J..LM), followed by assessment of rTM-mediated CWA. The 

10 peak values without (white column) and with (gray column) ofrTM (20 nM) were obtained, and the 

11 peak ratio (closed circle) was calculated. The dotted line shows the cut-off value (0.49) for the 

12 normal controls. 

13 

14 Figure 6. rTM-mediated CWA on FV-def plasma with various amounts of FV or with rFV 

15 mutants with APC resistance 

16 FV-def plasma mixed with (A) plasma-derived FV (0-400 IU/dL) or with (B) rFV (FV-WT, 

17 FV-R506Q, and FV-Wl920R; 40 IU/dL) was incubated with rTF (1 pM) and PL vesicles (12 J..LM), 

18 followed by assessment of rTM-mediated CWA. The peak values without (white column) and with 

19 (gray column) rTM (20 nM) were obtained, and the peak ratio (closed circle) was calculated. The 

20 dotted line shows the cut-off value (0.49) for the normal controls. 

21 

22 

23 Supplemental Figure 1. rTF or PL dose-dependent reaction on the rTM-mediated CWA 

24 (A) rTF dose-dependent reaction. Pooled normal plasma (PNP) was incubated with rTF (0.5-5 

25 pM), PL vesicles (4 J..LM), followed by the addition ofCaCh together with rTM (20 nM). 

26 (B) PL dose-dependent reaction. PNP was incubated with rTF (1 pM), PL vesicles (2-40 J..LM), 

27 followed by the addition of CaCh together with rTM (20 nM). The peak value without (open 

28 squares) and with (closed squares) rTM was observed and the peak ratio (closed circles) was 

29 calculated as described in Methods. 
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