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Individuals with autism spectrum disorder (ASD) have an increased risk of adverse

childhood experiences (ACEs) than typically developed (TD) children. Since multiple lines

of studies have suggested that ACEs are related to myelination in the frontal lobe,

an exposure to ACEs can be associated with white matter microstructural disruption

in the frontal lobe, which may be implicated in subsequential psychological deficits

after the adulthood. In this study, we investigated the relationship between ACEs and

microstructural integrity on frontal lobe-related white matter tracts using diffusion tensor

imaging in 63 individuals with ASD and 38 TD participants. Using a tractography-based

analysis, we delineated the uncinate fasciculus (UF), dorsal cingulum (Ci), and anterior

thalamic radiation (ATR), which are involved in the neural pathology of ASD, and

estimated each diffusion parameter. Compared to the TD participants, individuals with

ASD displayed significantly lower fractional anisotropy (FA) and higher radial diffusivity

(RD) in the left ATR. Then, ASD individuals exposed to severe ACEs displayed higher

RD than those exposed to mild ACEs and TD participants in the left ATR. Moreover, the

severity of ACEs, particularly neglect, correlated with lower FA and higher RD in the left

UF and ATR in individuals with ASD, which was not observed in TD participants. These

results suggest that an exposure to ACEs is associated with abnormality in the frontal

lobe-related white matter in ASD.
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INTRODUCTION

Autism spectrum disorder (ASD) is a major neurodevelopmental
disorder characterized by impaired social communication
and restricted repetitive behaviors (1). These characteristics
often make it difficult to establish appropriate interpersonal
relationships in daily and social life. Individuals with ASD
demonstrate atypical structural and functional brain patterns
than their typically developed (TD) counterparts and altered
network connectivity is involved in the core and other related
symptoms of ASD (2). In particular, abnormalities of the
neural pathways connected to the frontal lobe are reportedly
associated with the pathophysiology of ASD (3–6). Diffusion
tensor imaging (DTI) studies have reported on white matter
microstructural alteration in the frontal lobe-related white matter
bundles in ASD, such as the corpus callosum, uncinate fasciculus
(UF), arcuate fasciculus, anterior thalamic radiation (ATR), and
cingulum (Ci) (7, 8).

Poor social ability can be associated with an increased
risk of exposure to adverse life experiences in ASD. Children
with developmental disabilities, including ASD, are likely to
experience maltreatment, bullying, and maladaptation in the
local community and social life (9). Thus, these adverse
childhood experiences (ACEs) reportedly cause poor self-
esteem and motivation, thus resulting in subsequent psychiatric
comorbidities, such as depression, anxiety, and substance abuse
in adults with ASD (10).

Researchers have reported on the relationship between
ACE exposure and white matter microstructural disruption.
In animal studies, juvenile stress such as social isolation or
traumatic stress induced hypomyelination in the prefrontal
cortex of mice (11–13). In human studies, an exposure to ACEs
influenced white matter microstructural abnormalities in the
anterior cingulate cortex, ventromedial prefrontal cortex, corpus
callosum, corona radiata, inferior longitudinal fasciculus, and
inferior occipitofrontal fasciculus (7, 14–16). While an exposure
to neglect in childhood is associated with deteriorated frontal
white matter microstructure (6), parental verbal abuse is related
to white matter microstructural abnormality of the left arcuate
fasciculus (17). Thus, serious maltreatment in early life stages
is associated with white matter microstructural abnormalities.
However, the mechanism by which an exposure to ACEs
influences abnormal white matter microstructure in individuals
with ASD has not been completely elucidated.

The relationship between ACEs and white matter

microstructural disruption is of clinical importance for

considering the pathological basis of ASD. In this study, we
compared the association between ACEs and white matter
microstructural disruption in individuals with ASD and TD
participants. We focused on the UF, Ci, and ATR, which are
white matter tracts connected to the frontal lobe. The UF is a
hook-shaped bundle of nerves that connects the prefrontal cortex
to the medial temporal region (18, 19). It is involved in visual and
emotional memory, processing, and decision making (19–21).
Regarding the Ci, the dorsal Ci connecting the anterior to the
posterior cingulate cortex was explored in this study because it
has been involved in emotion and executive control, which was

important for ASD characteristics (8, 22). The ATR connects the
anterior thalamic nuclei to the prefrontal cortex and is involved
in executive function, the planning of complex behaviors, and
emotional regulation (23, 24). Previous reports demonstrating
the relationship between ACEs and white matter microstructural
disruption of these tracts led us to perform this study (8, 25). We
hypothesized that individuals with ASD exposed to serious ACEs
display more severe white matter microstructural disruption
than those exposed to mild ACEs and TD participants.

METHODS

Participants
We enrolled 63 age- and intelligence quotient (IQ)-matched
individuals with ASD and 38 TD participants. The full-scale IQ
of the participants was estimated using similarities and symbol
search subsets of the Wechsler Adult Intelligence Scale, third
edition (26). To match the IQ between individuals with ASD and
TD participants, those with IQ <80 and >120 were excluded
from the study. Individuals with ASD were recruited from
the outpatient service of the Department of Psychiatry, Nara
Medical University Hospital and affiliated psychiatric clinics in
Japan. They were diagnosed by two trained psychiatrists based
on the criteria of the Diagnostic and Statistical Manual-5 and
the Japanese version of the Autism Diagnostic Observation
Schedule, second edition (27), and autistic traits were also
examined by the Autism-Spectrum Quotient Japanese version
(AQ-J) (28). Twenty individuals with ASD had neuropsychiatric
comorbidities, including major depressive disorder (n = 6),
attention deficit hyperactivity disorder (n = 4), adjustment
disorder (n = 4), anxiety disorder (n = 3), avoidant personality
disorder (n = 2), alcohol use disorder (n = 1), epilepsy
(n = 1), schizophrenia (n = 1), bipolar disorder (n = 1),
panic disorder (n = 1), obsessive compulsive disorder (n =

1), oppositional defiant disorder (n = 1), and learning deficits
(n = 1). TD participants were recruited from the public
offering of the students, hospital, and school staff of the Nara
Medical University. They did not have a history of psychiatric,
neurological, or developmental disorders, and were requested to
complete the Mini-International Neuropsychiatric Interview to
exclude their current or past psychiatric history. Moreover, we
evaluated them using the AQ-J, and a score <32 was used as
the enrollment requirement. Thirty-four individuals with ASD
were prescribed the following psychotropic medications during
their participation: antidepressants (n = 21), hypnotic agents
(n = 16), antipsychotics (n = 13), anti-anxiety agents (n =

12), anti-epileptic agents (n = 3), atomoxetine (n = 2), and
anti-manic agents (n = 1). None of the TD participants had
a history of psychotropic medications. Structural abnormalities
of the brain were excluded in both groups, as determined by
T1-weighted magnetic resonance imaging (MRI). We assessed
the severity of ACEs using the Japanese version of the Child
Abuse and Trauma Scale (CATS) (29). The CATS is a 38-
item instrument that retrospectively evaluates adverse childhood
experiences (30). Each item is measured on a five-point scale
ranging from 0 to 4 and is divided into five major factors of
adverse childhood experiences as follows: neglect or negative
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home atmosphere, sexual abuse, punishment, emotional abuse,
and others. In addition, the sum of the scores provides the
total score. There was no cut-off point on the scale, and we
measured the median of the total CATS score in individuals with
ASD. Considering the median score was 37, individuals with
ASD and total CATS score ≥38 were defined as experiencing
higher ACEs (ASD with high CATS). In contrast, those with
scores ≤37 were defined as experiencing lower ACEs (ASD with
low CATS) to explore the relationship between the severity of
ACEs and microstructural white matter alteration. This study
was approved by the Institutional Review Board of Nara Medical
University, and all analyses were performed in accordance with
relevant guidelines and regulations. Written informed consent
was obtained from all individuals prior to their participation in
the study.

MRI Data Acquisition
All participants underwent brain MRI using a 3-Tesla clinical
scanner equipped with a 32 phased-array head coil (Magnetom
Verio; Siemens, Erlangen, Germany). The participants were
scanned with a three-dimensional T1-weighted gradient
echo sequence (repetition time [TR] = 1,900ms; echo time
[TE] = 2.54ms; field of view [FOV] = 256 × 256mm;
acquisition matrix = 256 × 256; and 208 contiguous axial slices
of 1mm thickness). We acquired DT images with an echo-planar
imaging sequence using a GeneRalized Autocalibrating Partially
Parallel Acquisition factor of two. The imaging parameters were
as follows: TR = 14,100ms, TE = 81ms, FOV = 256× 256mm,
acquisition matrix = 128 × 128, 79 contiguous axial slices of
2mm thickness, b= 1,000 s/mm2, and 30-axis encoding.

Image Processing
DTI was performed using the ExploreDTI software (https://www.
exploredti.com/). It included corrections for head motion and
eddy current-induced geometric distortions of raw diffusion-
weighted data (31). We estimated the diffusion tensor using a
non-linear least squares approach (32). We delineated the UF, Ci,
and ATR using deterministic tractography. In tractography, the
region of interest was set according to a previous study (Figure 1)
(33). In each of the delineated fiber tracts, we calculated three
diffusion parameters as follows: fractional anisotropy (FA), mean
diffusivity (MD), and radial diffusivity (RD). To assess the head
motion, we evaluated the root mean square (RMS) deviation
of absolute intervolume displacement with respect to the b =

0 images from intra-participant registration parameters using
the rmsdiff tool in FSL (34). The average displacement distance
between each consecutive pair of 31 volumes was calculated for
each participant.

Statistical Analyses
For continuous variables in the demographic data, group
comparisons were performed using unpaired two-tailed t-tests
and Mann–Whitney U tests for normally distributed and non-
normally distributed data, respectively. For categorical variables,
we performed Fisher’s exact test to compare the groups. Group
differences in the estimated diffusion parameters in the UF,
Ci, and ATR were assessed using the analysis of covariance
(ANCOVA) for years of education and the AQ-J as covariates
between individuals with ASD and TD participants with
Bonferroni correction to avoid type I errors due to multiplicity
(p < 0.0083). Additionally, regarding the group differences for

FIGURE 1 | Representative fiber tracts delineated by deterministic tractography for the UF, Ci, and ATR. (A) In the UF, we set a seed region of interest (ROI) in the

white matter on a coronal plane at the tip of the inferior horn of the lateral ventricle and a target ROI in the white matter on a coronal plane at the tip of the frontal horn

of the lateral ventricle. (B) In the Ci, we set a seed ROI in the white matter on a coronal plane on the top of the genu of the corpus callosum and a target ROI in the

white matter on a coronal plane on the top of the splenium of the corpus callosum. (C) In the ATR, we set a seed ROI in the white matter on a coronal plane at the

anterior limb of internal capsule and a target ROI in the white matter on a coronal plane at the anterior edge of pons. UF, uncinate fasciculus; Ci, cingulum; ATR,

anterior thalamic radiation.
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the comparison of ASD with low and high CATS score and TD
participants, the estimated diffusion parameters in theUF, Ci, and
ATR were assessed using the analysis of covariance (ANCOVA)
for years of education and the AQ-J as covariates with Bonferroni
correction to avoid type I errors due to multiplicity (p < 0.0083),
additionally with post hoc Fisher’s least significant difference
test (p < 0.05) for exploring each of the group difference. To
explore the relationships between the severity of ACEs and the
extent of white matter microstructural alteration, we performed
partial Spearman’s rank correlation analyses. This helped us
examine the relationships between CATS scores and estimated
diffusion parameters in the UF, Ci, and ATR with years of
education and the AQ-J as covariates in individuals with ASD
and TD participants, respectively (p < 0.05, as significant).
Normality assumptions for the statistical analysis were evaluated
using the Shapiro–Wilk test for each dataset. The analyses
were performed using SPSS version 27 (IBM Inc., Armonk,
NY, USA).

RESULTS

Demographic Characteristics
Table 1 summarizes the demographic and clinical characteristics
of the study participants. There were no significant differences in
the age, IQ, sex, and handedness between the two groups (p >

0.05). In contrast, individuals with ASD displayed significantly
lesser years of education and higher AQ-J scores than TD
participants (p < 0.05). Individuals with ASD demonstrated
significantly higher scores on each of the CATS scales than TD
participants (p < 0.05). There were no significant differences
in the age, IQ, years of education, sex, handedness, and
AQ-J and ADOS-2 scores between those with ASD with
high and low CATS scores (Supplementary Table 1). There
was no significant difference in the extent of head motion
based on the average RMS distance between individuals with
ASD and TD participants (ASD: 1.4 ± 0.2mm, TD: 1.4 ±

0.3mm, U = 1,072, p = 0.38). Additionally, no significant
difference of average RMS distance was shown between ASD
individuals with low and high ASD (ASD individuals with
low CATS: 1.4 ± 0.2mm, TD: 1.4 ± 0.2mm, U = 492,
p= 0.96).

Group Comparisons of Each DTI
Parameter of the Three Tracts Between
Individuals With ASD and TD Participants
Table 2 outlines group comparisons of DTI parameters
between individuals with ASD and TD participants. The
ANCOVA revealed that the diagnosis exerted a statistically
significant effect, such that individuals with ASD revealed
lower FA (F[2, 97] = 21.0; p < 0.001) and higher RD
(F[2, 97] = 9.0; p = 0.003) in the left ATR than TD
participants. There were no significant differences in the
DTI parameters in the UF and Ci between the groups
(p > 0.0083).

TABLE 1 | Demographic characteristics of the study participants.

ASD (n = 63) TD (n = 38) T or U or χ
2 p-value

Age (mean, SD) 27.3 (5.6) 27.8 (5.6) 1342.5 0.31

Duration of education

(mean, SD)

15.0 (2.3) 16.2 (2.3) 1535 0.015*

IQ (mean, SD) 101.0 (12.0) 104.8 (9.6) 1438.5 0.09

Sex (male, %) 48 (76.2) 27 (71.1) 0.33 0.64

Handedness (right, %) 58 (92.1) 38 (100) 3.2 0.15

AQ-J (mean, SD) 31.4 (7.4) 18.4 (7.0) 253 <0.001*

ADOS-2 (mean, SD) 15.4 (3.1) N/A N/A N/A

CATS (mean, SD)

Total 44.0 (25.7) 20.8 (14.4) 455 < 0.001*

Punishment 10.1 (5.1) 7.8 (3.6) 860 0.018*

Sexual abuse 0.56 (1.3) 0.08 (0.4) 989 0.021*

Neglect 15.2 (9.7) 6.9 (6.8) 545 < 0.001*

Emotional abuse 11.0 (7.8) 3.8 (3.1) 459 < 0.001*

Others 7.1 (6.0) 2.2 (3.4) 463 < 0.001*

ASD, autism spectrum disorder; TD, typically developed; IQ, Intelligence quotient; AQ-J,

Autism-Spectrum Quotient - Japanese version; ADOS-2, Autism Diagnostic Observation

Schedule second edition; CATS, Child Abuse and Trauma Scale; SD, standard deviation.

*p < 0.083.

Group Comparisons of Each DTI
Parameter of the Three Tracts Among
Individuals With ASD With High and Low
CATS Scores and TD Participants
Figure 2 and Supplementary Table 2 summarize the group
comparisons of each DTI parameter among individuals with
ASD having high and low CATS scores and TD participants.
The ANCOVA revealed that the diagnosis exerted a statistically
significant effect, such that individuals with ASD revealed lower
FA (p < 0.001) and higher RD in the left ATR (p = 0.002).
Post hoc comparisons revealed that those with ASD with high
(p < 0.001) and low (p < 0.001) CATS scores demonstrated
significantly lower FA in the left ATR than TD participants.
In contrast, there was no significant difference in FA in the
left ATR between individuals with ASD with high and low
CATS scores (p = 0.12). Moreover, those with ASD and high
CATS scores demonstrated significantly higher RD in the left
ATR than those with low CATS scores (p = 0.04) and TD
participants (p < 0.001). In addition, individuals with ASD
and low CATS scores demonstrated significantly higher RD
than TD participants (p = 0.044). There were no significant
differences in MD in the left ATR among the groups (p > 0.05).
Furthermore, we did not observe significant differences in the
diffusion parameters in the right ATR (p > 0.05). Then, there
were no significant diagnostic effect on the UF and Ci among the
three groups (p > 0.0083).

Significant Association Between the
Severity of CATS Scores in ASD and
Diffusion Parameters in the UF and ATR
Figure 3 outline Spearman’s partial correlation analyses between
the CATS total scores and subscale scores in individuals with
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TABLE 2 | Group comparisons of each diffusion parameter in individuals with ASD and TD participants.

ASD TD F p-value

UF Right FA 0.410 (0.019) 0.420 (0.022) 2.2 0.14

Left FA 0.409 (0.020) 0.417 (0.019) 0.64 0.43

Right MD 0.720 (0.028) 0.725 (0.027) 0.27 0.61

Left MD 0.744 (0.026) 0.752 (0.023) 0 0.99

Right RD 0.547 (0.024) 0.546 (0.027) 1.1 0.29

Left RD 0.565 (0.023) 0.566 (0.023) 0.14 0.71

Ci Right FA 0.511 (0.035) 0.531 (0.029) 0.62 0.43

Left FA 0.458 (0.043) 0.483 (0.036) 5.1 0.026

Right MD 0.685 (0.031) 0.698 (0.022) 0.13 0.72

Left MD 0.675 (0.030) 0.683 (0.026) 0.95 0.33

Right RD 0.467 (0.031) 0.463 (0.029) 0.079 0.78

Left RD 0.489 (0.029) 0.483 (0.030) 4.9 0.03

ATR Right FA 0.417 (0.025) 0.423 (0.020) 0.046 0.83

Left FA 0.418 (0.018) 0.441 (0.020) 21.0 <0.001*

Right MD 0.688 (0.023) 0.689 (0.024) 1.2 0.27

Left MD 0.688 (0.031) 0.689 (0.024) 0.13 0.72

Right RD 0.521 (0.023) 0.519 (0.023) 0.75 0.39

Left RD 0.521 (0.019) 0.514 (0.021) 9.0 0.003*

ASD, autism spectrum disorder; TD, typically developed; UF, uncinate fasciculus; Ci, Cingulum; ATR, anterior thalamic radiation; FA, fractional anisotropy; MD, mean diffusivity; RD,

radial diffusivity. *p < 0.05.

ASD and TD participants. The CATS total score was negatively
correlated with FA in the left UF (p = 0.043) and positively
correlated with RD in the left ATR (p = 0.034) in individuals
with ASD. There were no significant correlations between the
CATS total score and each diffusion parameter in the UF and
ATR in TD participants (p > 0.05). While the neglect subscale
score was negatively correlated with FA in the left UF (p = 0.02)
and ATR (p = 0.023), it was positively correlated with RD in
the left ATR (p = 0.037) in individuals with ASD. Moreover, the
emotional abuse subscale score was positively correlated with RD
in the left ATR in individuals with ASD (p = 0.044). There were
no significant correlations between each of the CATS subscale
scores and each diffusion parameter in the UF and ATR in TD
participants (p > 0.05).

DISCUSSION

In the present study, individuals with ASD demonstrated
significantly lower FA and higher RD in the left ATR than TD
participants, consistent with the findings of previous studies
(8, 35, 36). In consideration of ACEs, those with ASD and
high CATS scores revealed significantly lower FA and higher
RD in the left ATR than TD participants. Moreover, they
demonstrated significantly higher RD in the left ATR than those
with low CATS scores. ACE severity was correlated with white
matter microstructural alterations in the left UF and ATR, of
which neglect and demonstrated a significant correlation with
the left UF and ATR, in addition emotional abuse indicated a
significant correlation with the left ATR. In other words, neglect

and emotional abuse were clinically important for white matter
development in ASD.

In the DTI parameter, FA reflects less restricted water
diffusion of the white matter tract, and reduced FA is
associated with disrupted fiber tracts (37). RD reportedly reflects
diffusivity perpendicular to axonal fibers, and increased RD
is associated with the disruption of the myelin sheath (38–
40). Furthermore, decreased FA and increased RD can be
considered to reflect the disruption of compacted myelin sheath
structure of neural fibers (38, 41). Our findings suggested
that individuals with ASD displayed pronounced disruption of
compacted myeline sheath in the frontal-related fiber tracts
than TD participants, consistent with the findings of previous
reports (42). Moreover, ACEs were related to the severity of
disrupted myeline sheath in individuals with ASD but not in
TD participants. A previous animal study reported that Fmr1
knockout mice, as a possible model of ASD, exhibited excessive
sensitivity to environmental changes and synaptic connectivity
(43). Therefore, individuals with ASD may be more vulnerable
to ACE exposure, in relation to white matter deficits than
TD participants.

Individuals with ASD exposed to both severe and mild
ACE demonstrated more white matter microstructural
disruption than TD participants in the left ATR. In other
words, those with ASD fundamentally demonstrated white
matter disruption regardless of exposure to ACEs. Moreover,
individuals with ASD and exposed to severe ACEs demonstrated
worse white matter microstructural abnormality than those
exposed to mild ACEs in the left ATR. Therefore, the ATR
may be susceptible to ACE exposure, and its effect can be
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FIGURE 2 | Group comparisons of the estimated diffusion parameters among individuals with ASD with low and high CATS scores and TD participants. (A–C)

Individuals with ASD with low and high CATS scores display significantly lower FA than TD participants. No significant differences are shown between individuals with

ASD with low and high CATS scores. (D–F) There are no significant differences of MD among individuals with ASD and TD participants. (G–I) Individuals with ASD with

low and high CATS scores display significantly higher RD than TD participants. Those with ASD and high CATS scores also display higher RD than those with low

CATS scores. *p<0.05. ASD, autism spectrum disorder; TD, typically developed; CATS, Child Abuse and Trauma Scale; FA, fractional anisotropy; RD, radial diffusivity;

ATR, anterior thalamic radiation.

associated with white matter microstructural disruption in
ASD. Individuals with ASD and exposed to severe ACEs
may be at an increased risk of psychiatric comorbidities,
such as depression, anxiety disorder, and posttraumatic
stress disorder (3, 10, 44). The ATR dysconnectivity,
likely representing cortico-thalamic network dysfunction,
can associate with cognitive dysfunction and emotional
dysregulation, thereby resulting in psychological symptoms in
adults with ASD.

An exposure to neglect in early life stages is associated
with white matter abnormality in the prefrontal region (8),
and interestingly, it is of note that mouse models of early life
neglect show hypomyelination in the prefrontal cortex (11, 12).
Our findings demonstrated significant correlations between the
severity of ACEs, particularly neglect, and deteriorated DTI
parameters in the left UF and ATR. Similar to the ATR, the
UF is reportedly associated with psychiatric disorders (6, 45).
An exposure to neglect in childhood has been associated with
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FIGURE 3 | Relationships between the estimated diffusion parameters and each CATS score in ASD. (A–D) RD in the left ATR is significantly correlated with the total

CATS score in ASD. (E–H) FA in the left UF and ATR, and RD in the left ATR display significant correlations with the neglect CATS subscale scores in ASD. (I–L) RD in

the left ATR is significantly correlated with the emotional abuse CATS subscale scores in ASD. p < 0.05 as statistically significant. CATS, Child Abuse and Trauma

Scale; FA, fractional anisotropy; RD, radial diffusivity; UF, uncinate fasciculus; ATR. anterior thalamic radiation.

psychiatric comorbidities in adulthood. Then, previous reports
demonstrated that an exposure to emotional abuse was also
involved in white matter abnormality (46, 47), which were
consistent with our results. Our findings suggested that the
aforementioned exposure was associated with white matter
microstructural abnormalities in the UF and ATR, which
may be involved in emotional dysregulation and irregular
decision-making and the subsequent appearance of psychological
symptoms in ASD. Nonetheless, there were no significant
correlations between the severity of ACEs and each DTI
parameter in TD participants. Therefore, the susceptibility to
ACEs differs between individuals with ASD and their TD
counterparts. Moreover, individuals with ASD may present with
affected frontal lobe-related white matter on exposure to ACEs.

Our samples demonstrated the laterality of abnormal white
matter microstructure and its association with the severity of
ACEs in ASD. This laterality has been previously reported in
studies on ASD and was consistent with our results (16). A
previous study reported that white matter microstructures were
dominantly impaired on the left side in the UF and ATR in
individuals with ASD exposed to ACEs (42).

This study had several limitations. First, since our work was
a cross-sectional study, causal relationships between an exposure
to ACEs and white matter microstructural abnormality have not
been fully elucidated. Second, the CATS is a self-assessment

questionnaire for adverse life events; thus, it might have
introduced recall bias in the participants, thereby influencing
our findings. Considering the CATS was validated in a previous
study, we compared the severity of ACEs among our samples
(48). Third, we could not deny the possibility that abnormalities
in networks other than the UF, Ci, and ATR were related to
ACE exposure. Additionally, some participants with ASD in this
study had psychiatric comorbidities, which were related to white
matter abnormalities. Future studies are warranted to address
these issues.

In conclusion, an exposure to ACEs is more likely to be
associated with white matter microstructural disruption in the
frontal lobe-related white matter tracts in individuals with ASD
than TD participants. Of the ACE types, neglect can be of
critical importance for white matter disruption in ASD. Our
findings suggested the importance of a comprehensive growth
environment based on the consideration of ASD characteristics,
which may assist in appropriate neuronal development in
ASD patients.
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