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Abstract: Glioblastoma (GBM) is the leading malignant intracranial tumor and is associated with a
poor prognosis. Highly purified, activated natural killer (NK) cells, designated as genuine induced
NK cells (GiNKs), represent a promising immunotherapy for GBM. We evaluated the anti-tumor
effect of GiNKs in association with the programmed death 1(PD-1)/PD-ligand 1 (PD-L1) immune
checkpoint pathway. We determined the level of PD-1 expression, a receptor known to down-regulate
the immune response against malignancy, on GiNKs. PD-L1 expression on glioma cell lines (GBM-
like cell line U87MG, and GBM cell line T98G) was also determined. To evaluate the anti-tumor
activity of GiNKs in vivo, we used a xenograft model of subcutaneously implanted U87MG cells in
immunocompromised NOG mice. The GiNKs expressed very low levels of PD-1. Although PD-L1
was expressed on U87MG and T98G cells, the expression levels were highly variable. Our xenograft
model revealed that the retro-orbital administration of GiNKs and interleukin-2 (IL-2) prolonged the
survival of NOG mice bearing subcutaneous U87MG-derived tumors. PD-1 blocking antibodies did
not have an additive effect with GiNKs for prolonging survival. GiNKs may represent a promising
cell-based immunotherapy for patients with GBM and are minimally affected by the PD-1/PD-L1
immune evasion axis in GBM.

Keywords: PD-1; PD-L1; NK cell; glioblastoma

1. Introduction

Glioblastoma (GBM) is the most common primary malignant tumor of the brain.
Although standard treatment is comprised of maximal surgical resection followed by
adjuvant radiotherapy and chemotherapy with temozolomide (TMZ), the median survival
time remains less than 2 years [1,2]. Bevacizumab is a humanized antibody that inhibits
vascular endothelial growth factor, and may improve patient status and reduce the use
of corticosteroids; however, a previous clinical trial did not report a significantly longer
overall survival time in patients with newly diagnosed GBM [3]. Therefore, there is an
urgent need for the identification of novel and effective treatment strategies for GBM.
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Natural killer (NK) cells comprise less than 15% of all human peripheral blood lym-
phocytes and are defined phenotypically based on their expression of CD56 (neural cell
adhesion molecule) and lack of CD3 expression (part of the T cell receptor complex) [4].
Moreover, NK cells are crucial components of the innate immune system and can rec-
ognize abnormal cells, including transformed cells or virus-infected cells, without prior
sensitization [5,6]. NK cells also exhibit potent cytotoxic activity against tumor cells by
promoting apoptosis [7] and can remove abnormal cells involved in the innate immune
system [8,9]. NK cells recognize tumor cells by forming a synapse with their receptors
and induce apoptosis through the release of perforin and granzymes, cytotoxic molecules
directed against the target cells of the tumor [10]. Perforin functions by inducing the for-
mation of pores on the tumor, through which granzymes can be delivered into the tumor
cells [11]. Subsequently, granzyme-activated caspase induces tumor cell death via apopto-
sis [12]. The cytotoxic function of NK cells is determined by the balance between activating
and inhibitory receptor signals [13,14]. Several activating receptors expressed by NK cells
recognize the associated ligands expressed on GBM cells [15,16], and the ligation of the
activating receptors triggers cytotoxicity in NK cells [17]. Natural cytotoxicity triggering
receptor 1 (NCR1) is a representative receptor of NK cells and activates NK cells by recog-
nizing the specific ligand. The ligands of NK inhibitory receptors are also associated with
NK cell-mediated cytotoxicity against tumor cells [18–20]. In addition, NK cells produce
immunoregulatory cytokines (i.e., IL-2 and IFN-γ) and modulate the immune response
towards antitumor or antivirus immunity [21]. NK cells play a role in immune surveillance
and inhibit cancer tumor occurrence, proliferation, and metastasis [22,23]. Thus, there is
considerable interest in harnessing these properties of NK cells for the next wave of cancer
immunotherapy [24].

Multiple clinical studies have validated the use of NK cells as a promising therapeutic
option for the treatment of malignant tumors [25,26]. The efficacy of adoptively transferred
autologous lymphokine-activated killer cells (LAKs) has also been comprehensively ex-
plored since the earliest studies in the late 1980s [27]. Treatment with local autologous
LAKs was reported to be safe and have shown a survival benefit [28]. Despite these find-
ings, the clinical applications of NK cell-based immunotherapy, especially for GBM, have
scarcely been reported due to challenges in the large-scale expansion of highly purified
and stably activated NK cells [29]. In addition, immunosuppressive T cell components,
such as regulatory T cells (Tregs), in the LAK population can also suppress the cytolytic
activity of NK cells [30].

Recent studies have demonstrated that immune checkpoint blockers (ICBs) have
been attracting increased attention as a promising treatment strategy for a variety of ma-
lignancies. ICBs upregulate the function of immune cells against cancer cells, including
malignant melanoma and non-small cell lung cancer [31]. GBM has been found to exhibit
significantly higher levels of PD-L1 expression compared to that of lower-grade glioma [32].
Miyazaki et al. demonstrated that high PD-1 expression in recurrent GBM was associ-
ated with a shorter survival time following secondary resection [33]. In a recent Phase 3
randomized clinical trial for recurrent GBM treated with bevacizumab or nivolumab (an
anti PD-1 antibody), nivolumab failed to demonstrate superiority. However, patients with
methylated-O6-methylguanine DNA-methyltransferase (MGMT) promoter glioblastoma
and no baseline corticosteroid use may potentially benefit from treatment with ICBs [34].

Our previous research focused on the function of NK cells against GBM cells, and
widely discussed the potential use of NK cells as an immunotherapy for GBM. We estab-
lished highly purified, activated natural killer (NK) cells, designated as genuine induced
NK cells (GiNKs), using a novel ex vivo expanding culture method. Our results indi-
cated that GiNKs represent a promising alternative for cell-based immunotherapy for
GBM [35,36]. The present study aimed to further examine the anti-tumor effects of the
GiNKs against GBM cell lines in vitro, and intravenously transferring GiNKs to a subcuta-
neous GBM-like xenograft model in vivo. Second, we evaluated the involvement of the
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PD-1/PD-L1 pathway using PD-1 blockers following immunotherapy with GiNKs against
GBM cell lines, and in a GBM-like xenograft model in vivo.

2. Results
2.1. PD-1/PD-L1 Expression and NCR1 Based on the TCGA Data Set

To determine the expression pattern of the PD-1/PD-L1 pathway and NCR1 in gliomas,
we examined the RNA-sequencing data of gliomas from the GlioVis data portal to visualize
and analyze brain tumor expression datasets [37]. Our results revealed that PD-1 and
PD-L1 were expressed in GBM in The Cancer Genome Atlas (TCGA) database. Compared
to WHO grade II and grade III glioma, GBM (grade IV) was associated with the highest
level of PD-1/PD-L1 expression (p < 0.05). Furthermore, NCR1, a representative receptor
of NK cells, was also expressed in GBM, albeit at quite a low level. Compared to grade II,
GBM had significant expression (p < 0.05). The expression of PD-1/PD-L1 and NCR1 was
not associated with any differences in the overall survival (OS) (Figure 1).
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2.2. Expression of PD-L1 in GBM Cell Lines 
Two glioma cell lines were obtained (U87MG and T98G cells). The relative fluores-

cence intensity (RFI) of PD-L1 was assessed by comparing the levels of expression to that 
of a control IgG. The RFI of the U87MG and T98G cells was 7.12 and 2.78, respectively. In 
both cell lines, PD-L1 was expressed on the cell surface; however, the level of expression 
was variable (Figure 2a). 

Figure 1. Expression of PD-1, PD-L1, and NCR1 in gliomas in the TCGA data set. Top: mRNA expression of PD-1 (a),
PD-L1 (b) and NCR1 (c) according to the WHO grading system. Bottom: Kaplan-Meier curves based on mRNA expression.
p Values were determined using Turkey’s Honest significant difference test. ** p < 0.001, * p < 0.01, NS: not significant.

2.2. Expression of PD-L1 in GBM Cell Lines

Two glioma cell lines were obtained (U87MG and T98G cells). The relative fluorescence
intensity (RFI) of PD-L1 was assessed by comparing the levels of expression to that of a
control IgG. The RFI of the U87MG and T98G cells was 7.12 and 2.78, respectively. In both
cell lines, PD-L1 was expressed on the cell surface; however, the level of expression was
variable (Figure 2a).
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Left: U87MG cells and right: T98G cells. (b) The expression of PD-1 on the surface of GiNKs harvested from three 
healthy volunteers was detected. (c) The frequency of PD-1+/CD56+ NK cells of at least two independent experiments 
(n = 6). 

  

Figure 2. Expression of PD-L1 in GBM cell lines and PD-1 on GiNKs. (a) The relative Figure 1 was calculated based on
the fluorescent intensity of PE-conjugated PD-L1 antibodies divided by the fluorescent intensity of PE-conjugated IgG.
Left: U87MG cells and right: T98G cells. (b) The expression of PD-1 on the surface of GiNKs harvested from three healthy
volunteers was detected. (c) The frequency of PD-1+/CD56+ NK cells of at least two independent experiments (n = 6).

2.3. Expression of PD-1 on GiNKs

Flow cytometry analysis detected PD-1 expression on the surface of GiNKs harvested
from healthy volunteers. The frequency of PD-1+/CD56+ NK cells ranged between 1.7%
and 8.0% in three healthy individuals (n = 6). The percentage of PD-1-positive cells was
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highly variable among healthy volunteers, but was less than 10% in each of the samples
(Figure 2b,c). A very low frequency of PD-1 expressing NK cells was included in the GiNKs.
We demonstrated that γδT cells had a positive expression of PD-1 in Supplementary Figure S1.

2.4. Apoptosis-Inducing Effects of GiNKs on GBM Cell Lines In Vitro

The apoptosis detection assays revealed that after 24 h of exposure, a GiNK (effector)
to GBM cell (target) ratio (E:T) of 2:1 significantly induced apoptosis in both GBM cell lines
compared with an E:T ratio of 0.5:1 (p < 0.05). The GiNKs significantly induced apoptosis
in U87MG and T98G cells (p < 0.05); however, treatment with the PD-1 blocker did not
enhance or attenuate the apoptosis-inducing effect in both cell lines (Figure 3).
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least two independent experiments (n = 3). P values were determined using a two-way ANOVA followed by a Sidak’s test. 
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Figure 3. Apoptosis-inducing effects of GiNK on GBM cell lines in vitro. U87MG (a) and T98G (b) cell lines were exposed
to GiNK at a GiNK:GBM cell ratio of 0.5:1, 1:1, and 2:1 with and without a PD-1 blocker (nivolumab). Nonadherent and
detached adherent cells were stained with Annexin V–FITC, and the stained cells were analyzed using flow cytometry.
Annexin V-positive cells are presented as a percentage of apoptotic cells from the total number of counted cells. The graphs
show the percentages of Annexin V-positive apoptotic U87MG and T98G cells. Data are presented as the mean ± SE of at
least two independent experiments (n = 3). p Values were determined using a two-way ANOVA followed by a Sidak’s test.
**** p < 0.0001; *** p < 0.001; ** p < 0.01; * p < 0.05; n.s.: not significant.

2.5. GiNKs Produce Cytokines upon Recognizing GBM Cells

Next, we sought to determine the cytokine levels produced by GiNK (effector) cells
following exposure to U87MG (target) and T98G (target) cells. The levels of interferon
(IFN)γ in the supernatants of U87MG cells co-cultured with GiNKs were 53.4 ± 1.2 pg/mL
and 50.3 ± 2.6 pg/mL (treated with the PD-1 blocker), respectively, using the same E:T
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ratios. Treatment with the PD-1 blocker did not induce the production of the IFNγ on
U87MG. The IFNγ levels in the supernatants from T98G cells co-cultured with GiNKs were
38.2 ± 3.7 pg/mL and 32.1 ± 8.0 pg/mL (treated with the PD-1 blocker), respectively, using
the same E:T ratios. In addition, treatment with the PD-1 blocker did not induce IFNγ

production on T98G. Moreover, IL-6 was abundantly present in supernatants of U87MG
cells co-cultured with GiNKs (1:1, 5.6 ± 0.4 ng/mL) and GiNKs treated with the PD-1
blocker (5.2 ± 0.4 ng/mL). IL-6 was also abundantly present in the supernatants derived
from T98G cells co-cultured with GiNKs (1:1, 7.7 ± 0.7 ng/mL) and GiNKs treated with the
PD-1 blocker (8.3 ± 1.2 ng/mL). Moreover, the addition of the PD-1 blocker did not change
the production of the IL-6. Elevated RANTES was detected in the supernatants from the
cultures of effector cells alone (0.3 ng/mL). RANTES was also detected in the supernatants
of cells with an E:T ratio of 1:1 compared to effector-only conditions. The addition of the
PD-1 blocker did not enhance or attenuate the production of the RANTES (Figure 4).
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Figure 4. The cytokine production in GiNKs cultured with GBM cells. GBM cells (U87MG or T98G
cell lines) were co-cultured alone and with GiNKs at the indicated ratios for 24 h. The concentrations
of interferon-γ (IFNγ), interleukin-6 (IL-6), and regulated on activation, normal T-cells expressed and
secreted (RANTES) in the supernatant were determined. Values are presented as the means ± SD at
least two independent experiments (n = 3) in the upper table. Significant differences in lower figures
were determined using a one-way analysis of variance (ANOVA), followed by a Tukey’s test. The
figure represents table data. **** p < 0.0001; *** p < 0.001; ** p < 0.01; * p < 0.05; n.s.: not significant.

2.6. Effects of GiNK Treatment in Combination with a PD-1 Blocker against a Subcutaneous
Tumor Derived from GBM-like Cells

Next, we studied the anti-tumor effects of GiNKs with and without treatment with a
PD-1 blocker on U87MG cells in NOG mice in vivo. To this end, NOG mice were subcu-
taneously inoculated with U87MG cells followed by three injections into the intravenous
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via retro-orbital sinus (days 1, 4, and 7) with PBS (control), GiNKs alone, or GiNKs with a
PD-1 blocker (Figure 5a).

The mice treated with the GiNKs with and without the PD-1 blocker were associated
with a significantly longer survival time compared to the PBS control group (p < 0.05).
However, the presence of the PD-1 blocker did not influence the survival time (Figure 5b).
The results of the histochemical analysis showed that the tumors from both groups exhib-
ited a pseudopalisading pattern of tumor cells surrounding necrosis, which is a human
GBM-like histological feature (Figure 5c).
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Figure 5. Effects of the GiNKs when used in combination with a PD-1 blocker against subcutaneous tumors derived
from GBM-like cells. (a) Picture showing the experimental design. A total of 5 × 106 U87MG cells were subcutaneously
injected into the backs of NOG mice. The mice were then randomly assigned to three subcutaneous injection groups:
PBS/IL-2 (10,000 IU/mL), GiNKs (107)/IL-2 /IgG (40 µg), or GiNK/IL-2/PD-1 blocker (40 µg). The cells and drugs were
injected intravenously via the retro-orbital sinus (retro-orbital injection) (b) The graph shows the Kaplan–Meier curve.
Blue, red, and green lines represent the PBS/IL2 (n = 10), GiNK/IL-2/IgG (n = 10) and GiNK/IL2/PD-1 blocker (n = 10)
groups, respectively. Statistical significance was determined using a Log-rank test. *** and * indicate p < 0.005 and p < 0.05,
respectively. Not significant indicates n.s. (c) The picture shows hematoxylin & eosin stained a part of subcutaneous tumor
derived from U87MG cells. (Upper right: entire subcutaneous tumor).

3. Discussion
3.1. Current Status of Immunotherapy for GBM

Despite an aggressive standard of care regimen consisting of maximal surgical resec-
tion followed by combination radiation and chemotherapy, the prognosis of GBM patients
remains poor, with a high recurrence rate and a median OS of less than 2 years [33]. Fol-
lowing the success of ICBs in melanoma and non-small cell lung cancer, interest in the use
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of immunotherapy as an alternative treatment approach for GBM has rapidly increased
in recent years [31]. However, in GBM, immunotherapy, including vaccine therapy, vi-
ral therapy, and other cell-based therapies, has had a minimal impact on the OS [38,39].
Moreover, GBM has been proven to be highly resistant to standard treatments due to a
combination of tumor heterogeneity, adaptive expansion of resistant cellular subclones,
evasion of immune surveillance, and manipulation of various signaling pathways involved
in tumor progression and the immune response [38].

3.2. Characteristics of GiNKs

NK cells exhibit potent cytotoxic activity against tumor cells via the induction of
apoptosis [7] and can remove the abnormal cells as part of the innate immune system [8,9].
Moreover, NK cells play a role in immune surveillance and inhibit tumor occurrence,
proliferation, and metastasis [22,23]. We previously reported the expansion of human
peripheral blood NK cells using a novel culture system for clinical application as GiNKs.
Our method of selectively expanding autologous human NK cells is associated with the
highest purity and largest expansion scale using an easy, chemically defined and feeder-
free method. Moreover, we expanded NK cells from CD3+ T cell-depleted PBMCs, which
both enhanced the purity of NK cells and prevented contamination with regulatory T
cells (Tregs). It has been reported that a reduction in the function and number of Tregs
is beneficial as an immunotherapy against malignant tumors. In addition, GiNKs were
reported to exhibit a strong anti-tumor effect against GBM cell lines through inducing
apoptosis in vitro [35]. TMZ is widely used as the most effective anti-cancer drug for GBM
in the current standard therapy when used concomitantly with radiotherapy. Moreover,
GiNK induces apoptosis in TMZ-sensitive and TMZ-resistant human GBM cells and
enhances the TMZ-induced antitumor effects in different mechanisms [35]. Based on our
findings, immunotherapy using GiNK might represent a promising novel treatment option
for patients with GBM.

3.3. Role of the PD-1/PD-L1 Pathway on GBM

The cytotoxic function of NK cells is determined by the balance between activating and
inhibitory receptor signals [13,14]. Several activating receptors of NK cells (e.g., NKG2D
and DNAM-1) recognize their ligands expressed on GBM [15,16,20], and the ligation of
activating receptors triggers cytotoxicity in NK cells [17]. In addition, the ligands of NK
inhibitory receptors, including PD-1, NKG2A, and KIR2DL, are also associated with NK
cell cytotoxicity against tumor cells [18,19,40]. In the present study, we focused specifically
on the PD-1/PD-L1 axis as an immune check point. The level of PD-L1 expression in GBM
patients from the TCGA data set was associated with the WHO grading of glioma. In
addition, Grade 4 glioblastoma was associated with significantly higher PD-L1 expression
compared to Grades 2 and 3. According to the aggressive character of glioma, the PD-
1/PD-L1 pathway might exhibit higher activation under conditions of immunosuppression.
In this study, the level of PD-1 expression on GiNKs harvested from healthy volunteers
was extremely low. Pesce et al. reported that NK cells in ovarian cancer patients had a
significantly higher level of PD-1 expression compared to that of healthy volunteers [41].
The expression of PD-1 might also be higher in the NK cells of cancer patients that were
activated under cancer immuno-surveillance [42,43].

The role of the PD-1/PD-L1 pathway in GBM remains controversial. Huang et al.
reported that a blockade of the PD-1/PD-L1 pathway enhanced the anti-tumor effect of
mouse NK cells [44]. However, in a recent Phase 3 randomized clinical trial for recurrent
GBM treated with bevacizumab or nivolumab, nivolumab failed to demonstrate superiority.
However, patients with a methylated MGMT promoter, glioblastoma, and no baseline
corticosteroid use may potentially derive a benefit from treatment with immune checkpoint
inhibition. [34].
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3.4. Antitumor Effect of GiNKs against GBM In Vitro and In Vivo

To the best of our knowledge, less attention has been paid to the use of an NK cell-
based treatment for GBM. We previously expanded human peripheral blood NK cells
harvested from healthy volunteers using the novel culture system for clinical application
as GiNKs and reported a strong anti-tumor effect in vitro [35]. The results of the present
study showed that GiNKs significantly induced the apoptosis of U87MG and T98G cells
in the apoptosis detection assays; however, the presence of a PD-1 blocker did not induce
apoptosis in either cell line. We also determined the levels of cytokines produced by GiNK
cells upon exposure to U87MG and T98G cells. GiNKs exposed to GBM cells produced
significantly higher levels of IFNγ, IL-6, and RANTES. These results support the previous
finding that GiNKs have significant anti-tumor effects for GBM cells through the induction
of apoptosis and production of several cytokines.

RANTES accumulates in T cells and regulates inflammation in several diseases,
playing an active role in recruiting a variety of leukocytes (e.g., T cells, macrophages,
eosinophils, and basophils) into inflammatory sites. In collaboration with certain cytokines
released by T cells (e.g., IL-2 and IFNγ), RANTES also induces the activation and prolifera-
tion of specific NK cells to generate chemokine-activated killer cells [45].

IL-6 was substantially increased when GiNKs were co-cultured with GBM cells. In the
cytokine assay with GiNKs and GBM cells, it was not possible to determine which cells
produced IL-6. The study by Goswami et al. reported that U87MG cells expressed IL-6
and IL-6 receptors, whereas U87MG cells have an autocrine growth loop [46]. Previously,
IL-6/signal transducer and activator of transcription 3 (STAT3) signaling was reported to
support GBM cell growth and migration [47]. Moreover, an IL-6/STAT3/hypoxia-inducible
factor 1 subunit alpha autocrine loop has been observed in GBM. In addition, GBM cancer
stem cells have been found to respond to perturbations caused by hypoxia, the inhibition of
STAT3 phosphorylation, and IL-6 stimulation [48]. Thus, IL-6 is involved in the formation
and progression of GBM. Based on our findings, U87MG cells may have released IL-6;
however, a flow cytometry-based analysis of cytokine-producing cells is required to verify
this finding. On the other hand, we observed that GiNKs elicit direct cytotoxicity and
release cellular immunity-related cytokines, a finding that is contrary to the role of IL-6.
Therefore, we aimed to verify the antitumor effect of GiNKs in vivo.

In our in vivo experimental GBM model, NOG mice were subcutaneously inoculated
with U87MG cells and subsequently injected with GiNKs intravenously via the retro-
orbital sinus three times (days 1, 4, and 7). Treatment with GiNKs with or without a
PD-1 blocker exhibited a significantly longer survival time compared to that of the control
group. However, there was no significant additional effects on the survival time in the
group that received the GiNKs with the PD-1 blocker. Overall, the findings of our study
suggest that the intravenous injection of GiNKs is highly effective against subcutaneously
injected GBM cells independent of the PD-1/PD-1 pathway. There is a possibility that the
GBM immunosuppression system against NK cells will add increased complexity through
evasion via another pathway.

There are several limitations associated with the present study. First, we used periph-
eral blood harvested from healthy volunteers. Typically, the expansion of NK cells from
the blood of cancer patients is challenging due to the possibility of immune exhaustion
following various types of chemotherapy. Second, we evaluated the anti-tumor effect of
intravenously transferred GiNKs in a subcutaneous injection GBM model. It is possible
that the adoptively transferred GiNKs might exhibit limited persistence. Moreover, GiNKs
may not infiltrate the tumor through the brain-blood barrier, or the tumors could develop
mechanisms to evade NK cell surveillance in the brain. Thus, our findings warrant vali-
dation in an intra-cranially injected model of GBM and perform a first in-human trial in
future studies. Third, we have to pay attention to a natural immune system in mice before
the injection of NK cells, even though we adopted the NOG mice in this experiment. We
think that it is ideal to use CD34-humanized mice or PBMC-reconstituted mice, this setting
would better inform on the efficacy of the combination since a PD-1 blocker would then
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target T cells present in the tumor. Moreover, we did not evaluate the effect of a PD-L1
blocker in vitro and in vivo. This might synergize better than PD1 alone to eradicate the
tumors in combination with GiNKs.

4. Conclusions

We successfully demonstrated that ex vivo expanded and activated NK cells had
an anti-tumor effect for GBM cells in vitro and vivo assays. Our NK cells prolong the
overall survival of NOG mice subcutaneously injected with GBM-like cells. PD-1 blocking
antibodies did not have an additive effect with our NK cells for prolonging survival in our
xenograft model in GBM. Our findings reveal that our NK cells are less affected by the
PD-1/PD-L1 immune evasion axis in GBM. In the future study, the anti-tumor effect of our
NK cells in an intra-cranially injected model of GBM should be warranted.

5. Materials and Methods
5.1. Ethics

This study was approved by the ethics committee of Nara Medical University (approval
number: 1058). All procedures in studies involving human participants were performed
in accordance with the ethical standards of the institutional and/or national research
committee and in line with the 1964 Declaration of Helsinki and its later amendments or
comparable ethical standards. Informed consent was obtained from all healthy volunteers
included in the study. We collected 8 mL of heparinized peripheral blood obtained from
3 healthy volunteers.

5.2. Reagents

Nivolumab as the PD-1 blockade agent was provided as a gift from Ono Pharmaceuti-
cal Co., Ltd., Osaka, Japan.

5.3. GBM Cell Lines

We obtained the human GBM cell line, T98G (CRL-1690), and human GBM-like cell
line, U87MG (HTB-14), from the American Type Culture Collection (ATCC; Manassas, VA,
USA). The cell lines were maintained in Dulbecco’s modified Eagle’s medium (DMEM;
Life Technologies, Carlsbad, CA, USA) supplemented with 10% heat-inactivated fetal
bovine serum (FBS; MP Biomedicals, Tokyo, Japan), 100 U/mL penicillin, and 100 µg/mL
streptomycin (Life Technologies) at 37 ◦C in a humidified 5% CO2-containing atmosphere.

5.4. Induction of GiNKs

CD3-depleted peripheral mononuclear cells (PBMCs) were isolated using a Rosette-
SepTM Human CD3 Depletion Cocktail (STEMCELL Technologies, Vancouver, BC, Canada).
CD3-depleted PBMCs were placed in a T25 culture flask (Corning, Steuben, NY, USA)
containing AIM-V medium (Life Technologies, New York, NY, USA) supplemented with 5%
autologous plasma, 50 ng/mL recombinant human (rh) interleukin (rhIL)-18 (Medical and
Biological Laboratories Co., Ltd.; MBL, Nagoya, Japan), and 3000 IU/mL rhIL-2 (Novartis,
Basel, Switzerland) at 37 ◦C in a humidified 5% CO2-containing atmosphere for 14 days.
AIM-V supplemented with 3000 IU/mL IL-2 was replenished as necessary.

5.5. Analysis of Cell Surface PD-1 and PD-L1 Expression

Cells were stained with the appropriate antibodies and analyzed using a BD FACSCal-
ibur flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) and CellQuest software ver
6.0 (BD Biosciences) and FlowJo ver 10 (BD Biosciences). The following antibodies were
used: PE-conjugated anti-human CD279 (PD-1) (clone: EH12.2H7, Bio Legend, San Diego,
CA, USA); PE-conjugated anti-human CD274 (PD-L1) (B7-H1, Bio Legend, San Diego,
CA, USA); PE-conjugated mouse IgG2b (MPC-11, Bio Legend); AlexaFluor488-conjugated
anti-human CD56 (B159, BD Pharmingen, Franklin Lakes, NJ, USA); PE-conjugated mouse
IgG1 (MOPC-21, Bio Legend); and AlexaFluor488-conjugated mouse IgG1 (MOPC-21,
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BD Pharmingen). PD-1 expression on human-expanded γδT cells. The preparation of the
γδT cells was described previously [49]. Briefly, human PBMCs were placed in a T25 cul-
ture flask containing AIM-V medium supplemented with 5% autologous plasma, 1 µM
zoledronate (Novartis Pharma K.K., Tokyo, Japan) and 200 IU/mL rh IL-2. The cultures
were maintained and expanded in AIM-V medium supplemented with 200 IU/mL rhIL-2
for 14 days. The expanded cellular population was stained with FITC-conjugated anti-TcR
γδ (11F12, IgG BD Biosciences) and PE-conjugated PD-1 or PE-conjugated IgG.

5.6. Apoptosis Detection Assays

We performed apoptosis detection assays using an MEBCYTOTM Apoptosis Kit
(MBL), in accordance with the manufacturer’s instructions. Briefly, GBM cell lines were
exposed to GiNKs at E:T ratios of 0.5:1, 1:1, and 2:1 in the presence or absence of 10 µg
Nivolumab for 107 GiNKs for 4 h. Following the incubation, the floating cells were washed,
and adherent cells were trypsinized with PBS, stained with Annexin V–FITC, and main-
tained at room temperature for 15 min in the dark. The stained cells were analyzed using a
FACSCalibur flow cytometer and CellQuest Pro software ver 6.0. Notably, the NK cells
were excluded by electronic gating based on the forward-scatter and side-scatter character-
istics. The frequency of the Annexin V-positive populations was defined as apoptotic cells,
as previously described [35,50].

5.7. Cytokine Detection

A Human Cytometric Bead Array Flex Set System (BD Biosciences, San Jose, CA, USA)
was used to determine cytokine production in GiNKs cultured with GBM cells. GBM cells
(U87MG or T98G cell lines) were co-cultured at ratios of 1:1 for 24 h with GiNKs. Four
tests for cytokine detection were performed in each GBM cell. They included the group
with GBM cells alone, with GiNKs alone, with GBM cells/GiNKs/IgG, and with GBM
cells/GiNKs/PD-1 blocker. The concentrations of interferon-γ (IFNγ: 558269), interleukin-
6 (IL-6: 558276), and regulated on activation, normal T-cells expressed and secreted
(RANTES: 558324) in the supernatant were determined. The experiment was performed
three times. The assays were performed according to the manufacturer’s instructions. Data
were acquired on a BD FACSMelody flow cytometer (BD Biosciences).

5.8. In Vivo Xenograft Assay

The in vivo xenograft assay was performed as described previously [50,51]. Briefly,
nonobese diabetes (NOD)/severe combined immunodeficiency (SCID)/γcnull (NOG) mice
were purchased from the Central Institute for Experimental Animals (Kanagawa, Japan).
All animal experiments were approved by the Institutional Animal Care and Use Com-
mittee of Nara Medical University. A total of 5 × 106 U87MG cells were subcutaneously
injected into the backs of 8-week-old female NOG mice. The mice were randomly assigned
to three subcutaneous (s.c.) injection groups: PBS/IL-2 (10,000 IU/mL), GiNK (107)/IL-2
(10,000 IU/mL)/IgG (40 µg), GiNK (107)/IL-2 (10,000 IU/mL) PD-1 blocker (40 µg), respec-
tively. The cells and drugs were suspended in 250 µL PBS and injected intravenously via
the retro-orbital sinus. Retro-orbital injections were performed using a 29 G needle under
isoflurane anesthesia as previously reported [52].

5.9. Histochemical Analysis

The subcutaneous tumors were fixed with 10% neutral-buffered formalin and em-
bedded in paraffin. After sectioning, 5-µm-thick sections were placed on glass slides
and stained with hematoxylin and eosin (HE). Photographs were taken using an BX-710
(KEYENCE, Osaka, Japan) at 40× magnification.

5.10. Statistical Methods

Data are presented as the mean ± standard error. Statistical analyses were performed
using Prism 8 (GraphPad Software Inc., San Diego, CA, USA). Statistically significant dif-
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ferences were determined using a Turkey’s Honest Significant difference test and one-way
analysis of variance (ANOVA) followed by Tukey’s test and two-way ANOVA followed
by Sidak test. p < 0.05 was considered statistically significant. Kaplan–Meier curves was
also produced using Prism 8. Statistically significant differences were determined using a
log-rank test.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22189975/s1.
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