Muscle-evoked potentials after electrical stimulation to the brain in patients undergoing spinal surgery are less affected by anesthetic fade with constant-voltage stimulation than with constant-current stimulation.

Masato Tanaka MD1, Hideki Shigematsu MD PhD1, Masahiko Kawaguchi MD PhD2, Hironobu Hayashi MD PhD2, Tsunenori Takatani MT PhD3, Eiichiro Iwata MD PhD1, Akinori Okuda MD PhD1, Yasuhiko Morimoto MD1, Sachiko Kawasaki MD1, Keisuke Masuda MD1, Yusuke Yamamoto MD PhD1, Yasuhiro Tanaka MD PhD1

1) Department of Orthopaedic Surgery, Nara Medical University

2) Department of Anesthesia, Nara Medical University

3) Division of Central Clinical Laboratory, Nara Medical University

Corresponding author:

Hideki Shigematsu1

Department of Orthopaedic Surgery, Nara Medical University

840 Shijo-cho, Kashihara City, Nara 6348522, Japan

Tel.: (81) 74422-3051; fax: (81) 74425-6449

E-mail address: shideki714@gmail.com (H. Shigematsu)
Acknowledgments:

The authors thank Sayomi Yamamoto, Junko Kato, Kazuya Morimoto, Kiyomi Mameda, Ryohei Mizobata, and Aya Nakamori for their technical assistance with the transcranial electrical stimulation of motor-evoked potentials.

Conflict of interest and source of funding statement: The authors have no conflicts of interest for funding sources to declare.
Abstract

Study Design: A prospective, within-subject study was conducted.

Objective: We aimed to compare the influence of anesthetic fade under maximum stimulation conditions between constant-current and constant-voltage stimulation techniques.

Summary of Background Data: The monitoring of muscle-evoked potentials after electrical stimulation to the brain (Br(E)-MsEP) is useful for assessing the integrity of spinal cord motor tracts during major spine surgery. Nonetheless, Br(E)-MsEP responses are known to deteriorate over the duration of surgeries performed under general anesthesia. This phenomenon is known as anesthetic fade.

Methods: We recruited 117 patients undergoing various spinal surgeries from the cervical to the lumbar level. We excluded 29 cases with insufficient data. The decrease rate of the Br(E)-MsEP amplitude for each muscle was examined. Br(E)-MsEP monitoring with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions was applied. Compound muscle action potentials (CMAPs) were bilaterally recorded from the abductor pollicis brevis, deltoid, abductor hallucis, tibialis anterior, gastrocnemius, and quadriceps muscles. We defined the decrease rate as follows: (initial CMAPs-final CMAPs)/initial CMAPs×100. Differences in the decrease rate were evaluated between stimulators, limbs (upper vs lower), and operative time group (lowest quartile vs highest quartile).
Results: The overall decrease rate (across all muscles) increased as the operative time increased, and the rate was higher in the lower limbs than in the upper limbs. In addition, the overall decrease rate was lower with constant-voltage stimulation than with constant-current stimulation. Furthermore, the decrease rate for constant-current stimulation was significantly higher than that for constant-voltage stimulation, regardless of the operative time.

Conclusions: The CMAP waveform with constant-voltage stimulation is less susceptible to anesthetic fade than that with constant-current stimulation, even during long surgeries.

Key Words: Br(E)-MsEP, anesthetic fade, false positive, spine surgery, constant-current stimulation, constant-voltage stimulation, operative time, spinal cord motor tracts, lower limbs, upper limbs
Key Points (3-5 main points of the article)

- We evaluated anesthetic fade using the decrease rate of compound muscle action potentials (CMAPs).

- We examined the impact of different stimulation methods (constant-current vs constant-voltage) on anesthetic fade.

- CMAP waveform with constant-voltage stimulation is less susceptible to anesthetic fade than is constant-current stimulation, even during long surgeries.
We examined the impact of different stimulation methods (constant-current vs constant-voltage) on anesthetic fade. The compound muscle action potential waveform with constant-voltage stimulation is less susceptible to anesthetic fade than that with constant-current stimulation, even during long surgeries.
Anesthetic fade

1 Muscle-evoked potentials after electrical stimulation to the brain in patients undergoing spinal

2 surgery are less affected by anesthetic fade with constant-voltage stimulation than with constant-

3 current stimulation

Conflict of interest and source of funding statement: The authors have no conflicts of interest

or funding sources to declare.
Abstract

Study Design: A prospective, within-subject study

Objective: We aimed to compare the influence of anesthetic fade under maximum stimulation conditions between constant-current and constant-voltage stimulation techniques.

Summary of Background Data: The monitoring of muscle-evoked potentials after electrical stimulation to the brain (Br(E)-M₅EP) is useful for assessing the integrity of spinal cord motor tracts during major spine surgery. Nonetheless, Br(E)-M₅EP responses are known to deteriorate over the duration of surgeries performed under general anesthesia. This phenomenon is known as anesthetic fade.

Methods: We recruited 117 patients undergoing various spinal surgeries from the cervical to the lumbar level. We excluded 29 cases with insufficient data. The rate of the Br(E)-M₅EP amplitude’s decrease for each muscle was examined. Br(E)-M₅EP monitoring with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions was applied.

Compound muscle action potentials (CMAPs) were bilaterally recorded from the abductor pollicis brevis, deltoïd, abductor hallucis, tibialis anterior, gastrocnemius, and quadriceps muscles. We defined the rate of decrease as follows: (initial CMAPs-final CMAPs)/initial CMAPs×100. Differences in the rate of decrease were evaluated between stimulators (constant-current vs. constant-voltage), limbs (upper vs. lower), and operative time groups (lowest quartile
Anesthetic fade

1 vs. highest quartile).

2 **Results:** The overall rate of decrease (across all muscles) increased as the operative time increased, and the rate was higher in the lower limbs than in the upper limbs. In addition, the overall rate of decrease was lower with constant-voltage stimulation than with constant-current stimulation.

3 Furthermore, the rate of decrease for constant-current stimulation was significantly higher than that for constant-voltage stimulation, regardless of the operative time.

4 **Conclusions:** The CMAP waveform with constant-voltage stimulation is less susceptible to anesthetic fade than with constant-current stimulation, even during long surgeries.

5

6

7 **Key Words:** Br(E)-M_{S}EP, anesthetic fade, false positive, spine surgery, constant-current stimulation, constant-voltage stimulation, operative time, spinal cord motor tracts, lower limbs, upper limbs
1 **Key Points**

2 • We evaluated anesthetic fade using the rate of decrease of compound muscle action potentials (CMAPs).

3 • We examined the impact of different stimulation methods (constant-current vs. constant-voltage) on anesthetic fade.

4 • The CMAP waveform with constant-voltage stimulation is less susceptible to anesthetic fade than with constant-current stimulation, even during long surgeries.
Anesthetic fade

1 Mini-abstract

2 We examined the impact of different stimulation methods (constant-current vs. constant-voltage) on anesthetic fade. The compound muscle action potential waveform with constant-voltage stimulation is less susceptible to anesthetic fade than with constant-current stimulation, even during long surgeries.

3

4

5

6

7

8
Anesthetic fade

1 Introduction

Intraoperative spinal cord monitoring of brain-evoked muscle-action potentials (Br(E)-M₃EPs) is widely used to avoid spinal cord injury during spinal surgery. By recording compound muscle action potentials (CMAPs) from the muscles of the upper and lower limbs, Br(E)-M₃EPs can be used to monitor motor function. Performing spinal cord monitoring contributes not only to the safety of surgery, but also to the surgical procedures, providing feedback to the surgeon.

Although Br(E)-M₃EP monitoring has greater sensitivity than somatosensory-evoked potential (SSEP) monitoring for the detection of changes in motor tract integrity during spinal surgery, false positives are abundant. One cause of false positives is a phenomenon known as “anesthetic fade”, which refers to the gradual decrease in the CMAP waveform over a long period of time. MacDonal et al. also described this phenomenon as a “potential fade”. It is critical to understand that gradual fading of muscle Br(E)-M₃EP amplitude and threshold increase is normal during stable intravenous or inhalational anesthesia without scalp edema. Lyon et al. analyzed the relationship between surgical time and Br(E)-MsEP threshold change and reported that waveform attenuation is related to anesthesia time and myelopathy before surgery. In their study, they used constant-voltage stimulation for Br(E)-MsEP monitoring.
Anesthetic fade

To date, two types of stimulations have been used to generate Br(E)-M$_3$EPs, namely, constant-voltage and constant-current. We previously reported that constant-voltage stimulation performs better than constant-current stimulation in terms of the successful evocation of CMAPs.$^{(8)}$

However, there are no reports on whether constant-voltage or constant-current stimulation is more easily influenced by anesthetic fade at the maximum stimulation setting of the stimulation device. Therefore, we aimed to identify the characteristics of anesthetic fade and to compare the influence of anesthetic fade under maximum stimulation between constant-voltage and constant-current stimulation techniques, and determine which stimulation method would better allow continued monitoring that avoided anesthetic fade during long surgeries in terms of 1) the rate of decrease of all muscles; 2) the rate of decrease according to operative time (short vs. long surgeries); and 3) the rate of decrease according to limb (lower vs. upper limbs).

Materials and methods

This prospective, within-subjects study was approved by the local institutional review board. All patients provided informed written consent, in accordance with ethical standards.

Subjects

The potential subject pool comprised 258 patients who underwent elective spine and spinal cord
Anesthetic fade

surgeries with Br(E)-M3EP monitoring between July 2014 and April 2016. Of these, 141 patients
declined to participate. In addition, 29 patients did not have sufficient clinical data. Thus, the final
study population comprised 88 patients (Fig. 1). The patients (46 male and 42 female) ranged in
age from 14 to 85 years (mean, 61 years). The patients had been diagnosed with cervical spinal
stenosis (n=15), cervical ossification of the posterior longitudinal ligament (n=3), cervical tumor
(n=2), lumbar canal stenosis (n=22), lumbar spondylolisthesis (n=5), lumbar spinal tumor (n=3),
 thoracic tumor (n=7), scoliosis (n=3), or other spinal disorders (n=28). Preoperative mild to severe
motor weakness in any muscle (manual muscle test: 0–3) was present in 8 of the 88 patients (9%).
Postoperatively, there was no additional nerve injury in any of the patients.

The cases were divided according to operative-time quartiles. Cases with an operative time of less
than 81 minutes (the lowest quartile, n=22) were classified into the short-time group, and those
with an operative time of more 190 minutes (the highest quartile, n=22) were classified into the
long-time group (Fig.1).

Anesthesia

To minimize the suppressive effects of the anesthetic agents and neuromuscular blockades on
Br(E)-M3EP waveforms, anesthesia was standardized for all patients as follows. No medication
Anesthetic fade

Anesthesia was administered before anesthesia. Anesthesia was induced using 2–4 μg/kg of fentanyl, 0.25–
0.5 μg/[kg·min] of remifentanil, and 3.0–5.0 μg/mL of propofol, administered via a target-
controlled infusion pump (TE-371; Terumo, Tokyo, Japan). After induction, tracheal intubation
was facilitated using 0.6 mg/kg of rocuronium. Anesthesia was maintained with a regimen of
propofol (2.0–3.0 μg/mL), fentanyl, and remifentanil (0.20–0.5 g/[kg·min]), administered via a
target-controlled infusion pump. The depth of anesthesia was adjusted to maintain the bispectral
index within a range of 40–60. No additional neuromuscular blockades were administered after
tracheal intubation to avoid pharmacologic reduction and the disappearance of the Br(E)-M3EP
waveforms. Sugammadex was administered to reverse the profound residual neuromuscular
blockade induced by rocuronium only if the ratio of the fourth response to the first response in
the train-of-four monitoring at the timing of the control Br(E)-M3EP recordings did not return to
at least 0.80. After the trachea was intubated, the lungs were ventilated mechanically to maintain
the partial pressure of end-tidal carbon dioxide level within 30 and 40 mmHg. A mixture of air
and oxygen was administered. The rectal temperature was maintained between 35.5°C and
37.0°C.

Stimulators

The parameters used for each stimulation type are summarized in Table 1. The constant-voltage
Anesthetic fade

stimulator was a SEN-4100 (Nihon Koden, Tokyo, Japan), and the constant current stimulator
2 was an MS-120B (Nihon Koden). Both constant-voltage and constant-current stimulators were
3 used in all of the patients. In a preliminary study, the authors determined that a 2-minute interval
4 after the Br(E)-MgEP recording did not affect subsequent responses; therefore, the interval
5 between Br(E)-MgEP recordings was set at more than 2 minutes. Monophasic stimulation was
6 used, delivered via right-anode and left-cathode stimulating electrodes (Fig. 2). Briefly, a train of
7 five stimulating pulses was delivered at 500 Hz (2-ms interstimulus interval). The stimulating
8 electrodes consisted of a pair of 14.5-mm silver-plated disc electrodes at the C3 (cathode) and C4
9 (anode) locations of the international “10–20” system for the scalp (Fig. 3) and were affixed
10 using conductive paste. The intensity of the transcranial stimulation was determined at the outset
11 of the Br(E)-MgEP recording, based on previously published data. Accordingly, our devices were
12 set to deliver the maximum stimulus in each case (500 V and 200 mA), which corresponded to
13 the maximum stimulation settings on the devices.

Recording of CMAPs

CMAPs were recorded on the first trial at baseline, after the disappearance of the effect of
17 muscle relaxation. CMAPs were bilaterally recorded from the skin over the abductor pollicis
18 brevis (APB), deltid (Del), abductor hallucis, tibialis anterior, gastrocnemius, and quadriceps
Anesthetic fade

1 muscles. A ground electrode was placed on the left or right upper limb, proximal to the elbow.

2 An intraoperative Br(E)-MgEP measurement system (Neuromaster MEE1232, Nihon Koden) was used to collect CMAP data. When the intraoperative CMAP waveform declined, we checked

3 the blood pressure, depth of anesthesia, and amount of bleeding. When the waveforms deviated

4 from their control levels, we adjusted them with several rounds of stimulation and evaluation to

5 guarantee reproducibility.

6

7 The influence of anesthetic fade was evaluated as the decrease rate of CMAPs, which was defined

8 as follows: decrease rate = (initial CMAPs - final CMAPs) / initial CMAPs \times 100. If the initial

9 CMAPs could not be measured (i.e. zero μV), the muscle was excluded from analysis. As the

10 decrease rate is measured in the present study, the exclusion of muscles that could not be measured

11 at the initial time is considered to be a non-issue.

12

13 Statistical analysis

14 All statistical analyses were performed using SPSS version 17.0 (IBM, Chicago, IL, USA).

15 Differences in the decrease rate between constant-voltage and constant-current stimulations

16 (overall and according to upper/lower limbs) were evaluated using the Wilcoxon signed-rank test.

17 Differences in the decrease rate between the long-time and short-time groups and between

18
constant-voltage and constant-current stimulations according to operative time were evaluated using the Mann-Whitney U test. The threshold for statistical significance was set at $p < 0.05$.

4 Results

5 Constant-voltage stimulation demonstrated a lower overall decrease rate (across all muscles) than that for constant-current stimulation ($p < 0.01$) (Table 2). The decrease rate was significantly higher in the long-time group than in the short-time group for both the constant-voltage and constant-current stimulations (Table 3). Furthermore, the decrease rate was significantly lower for constant-voltage stimulation than for constant-current stimulation in both the short-time and long-time groups (Table 2). The decrease rate was significantly higher in the lower limbs than in the upper limbs for both the constant-voltage and constant-current stimulations (Table 5).

13 Discussion

14 The present study demonstrated that, across all muscles, constant-voltage stimulation is less affected by anesthetic fade than constant-current stimulation. In addition, patients with long operative times (the long-time group) were more affected by anesthetic fade than patients with short operative times (the short-time group). Furthermore, it became clear that for both short and long operative times, constant-voltage stimulation is less affected by anesthetic fade than constant-
Anesthetic fade

current stimulation. Finally, in either stimulation method, the lower limbs muscles were more
affected by anesthetic fade than the upper limbs muscles.

As we mentioned above, anesthetic fade was first reported by Lyon et al.\(^6\) The authors of this
previous study measured the amount of stimulation voltage required to obtain 50 μV in the CMAP
waveform amplitude over time and found that the required stimulation voltage amount increased
gradually. Based on this result, the authors considered the suppression of anterior horn cell
excitability, accumulation of propofol, etc., as the causes of anesthetic fade with the passage of
time.\(^6\) Macdonald et al.\(^7\) reported that there is considerable individual variation in anesthetic
fade, from little or no fade to substantial fade, threatening false-positive results in practice. An
important feature of anesthetic fade is its gradual generalized evolution, which distinguishes this
phenomenon from more abrupt focal pathological decrements.\(^7\) The present study demonstrates
that anesthetic fade also differs according to the stimulation method.

Currently, the Spinal Cord Monitoring Working Group of the Japanese Society for Spine Surgery
and Related Research recommends designating an alarm point of a 70% decrease in the
amplitude for routine spinal cord monitoring.\(^9\) Although there was no new paralysis after
surgery in the present study, we found that the muscles with a CMAP-amplitude decrease of 70%
Anesthetic fade

2

or more due to the influence of anesthetic fade occurred at a rate of 24% for constant-current

2

stimulation and 7% for constant-voltage stimulation (Table 2). Therefore, constant-current

3

stimulation is more likely to cause a false positive due to anesthetic fade than constant-voltage

4

stimulation.

5

Based on the present study results, constant-voltage stimulation appears to be more advantageous

7

than constant-current stimulation for continued monitoring at the maximum stimulation setting of

8

the device, as constant-voltage stimulation is not as easily influenced by anesthetic fade. However,

9

waveform attenuation is observed over time with either stimulation method, and spine surgeons

10

should be aware that it is important to compare the waveforms to those immediately before

11

performing continuous monitoring, in order to prevent Br(E)-MsEP false positives.

12

The standardization of the degree of stimulation between constant-voltage and constant-current

14

stimulations is difficult. Hausmann et al.\(^9\) reported that the charge required to record the

15

equivalent amplitude of Br(E)-MsEP using constant-voltage stimulation is 35% less than that for

16

constant-current stimulation. MacDonald et al. reported that constant-voltage stimulators are now

17

the most commonly used stimulators for Br(E)-MsEP monitoring.\(^7\) However, the stimulating

18

current depends on the resistance, which varies according to multiple factors during surgery. Since
Anesthetic fade

1 charge is the most relevant parameter for stimulation, and threshold charge is linearly related to
2 pulse duration, a constant charge design would be logical. However, there is no stimulation
3 method that achieves a constant charge at present. In the present study, we found that the influence
4 of anesthetic fade was less with constant-voltage stimulation than with constant-current
5 stimulation at the maximum stimulation setting of the devices, and that it is possible to successfully
6 continue monitoring with constant-voltage stimulation, even during long surgeries.

7 Maintaining a constant blood concentration of the anesthetic is important when discussing
8 anesthetic fade. In this study, anesthesia was maintained with a regimen of propofol (2.0–3.0
9 µg/mL), administered via a target-controlled infusion pump. No significant difference between the
10 target-controlled infusion plasma concentration and the actual measured plasma concentration has
11 been reported. Thus, the target-controlled infusion concentration and the actual
12 concentration might have a minor difference without a significant clinical impact. Furthermore,
13 the depth of anesthesia was adjusted to maintain the bispectral index within a range of 40 to 60.
14 Liu et al. reported that the concentration of propofol is closely correlated to the bispectral index
15 value. Therefore, it is believed that the blood concentration of anesthesia can be kept constant
16 by administering propofol with target-controlled infusion and adjusting the bispectral index.
17 There are several reports on the difference in Br(E)-M3EP amplitude between the upper and
18 lower limbs. MacDonald et al. reported that the muscle responses in the lower limbs may

15
sometimes be more affected by anesthetic fade than those in the upper limbs. Additionally,

Chong et al.(14) evaluated the effect of incremental concentrations of desflurane vis-à-vis sevoflurane on Br(E)-M$_3$EPs and found that the lower limbs are more sensitive to anesthetic-induced depression than the upper limbs. In the present study, regardless of the stimulation method, we found that the lower limbs were more affected by anesthetic fade than the upper limbs. As there are no previous studies comparing the influence of anesthetic fade on responses in the upper and lower limbs, the present study provides novel and clinically useful data for the spine surgeon.

The present study has several limitations. First, the present analysis did not take into account the muscle weakness before surgery. Lyon et al.(6) reported that patients with myelopathy have a greater degree of fade than those who are neurologically intact. However, in the present study, we investigated the changes in amplitude for individual cases over time; thus, we do not believe the results would be affected by preoperative paralysis. Second, as there is no universal common definition of anesthetic fade, we employed our own definition. Third, our cases included several types of spinal disorders, which were distributed throughout the entire spinal cord. Furthermore, we did not examine the variation in the amount of bleeding and anesthetic agents. However, we believed that these factors would not significantly affect the observed differences because the
interval between the constant-voltage and constant-current stimulations was only 2 minutes.

Finally, we chose 500 V and 200 mA as the constant-voltage and constant-current stimulation settings, respectively. Although these settings reflect the maximum stimulation of our devices, whether our results can be generalized to other stimulation settings is unclear.

Conclusions

We compared the influence of anesthetic fade on the CMAP waveform between constant-current and constant-voltage stimulations at the maximum stimulation. Although waveform attenuation is observed over time with either stimulation method, the present study revealed that the CMAP waveform with constant-voltage stimulation is less susceptible to anesthetic fade than with constant-current stimulation, even during long surgeries. Spine surgeons should be aware of this anesthetic fade phenomenon in Br(E)-M_sEP monitoring and keep it in mind, recording the CMAP amplitude immediately before each key surgical procedure as a control waveform and comparing it to the waveforms after each procedure in order to avoid anesthetic fade. Finally, based on our results, the use of constant-voltage stimulation may reduce Br(E)-M_sEP false positives during long surgeries.
1 References

7 87.

Anesthetic fade

2 12. Igarashi T, Nagata O, Kuroyanagi A, Iwakiri H, Ozaki M. [Reliability of propofol target-
3 controlled infusion in elderly patients]. Masui The Japanese journal of anesthesiology.
5 13. Liu SH, Wei W, Ding GN, Ke JD, Hong FX, Tian M. Relationship between depth of
6 anesthesia and effect-site concentration of propofol during induction with the target-controlled
9 comparison of the effect of desflurane and sevoflurane on intraoperative motor-evoked potentials
1 Figure legends

2 Figure 1. Flow diagram of patient enrollment and inclusion

3 The initial pool consisted of 258 patients; data from the final group of 88 individuals was analyzed.

6 Figure 2. The stimulation condition is depicted and the muscles recorded during the transcranial electrical stimulation of motor-evoked potentials for monophasic stimulation are shown.

8 AH, abductor hallucis; APB, abductor pollicis brevis; Del, deltoid; GC, gastrocnemius; ISI, interstimulus interval; Rt, right; Quad, quadriceps; TA, tibialis anterior

11 Figure 3. Anatomical locations according to the international 10–20 system
References

6. Lyon R, Feiner J, Lieberman JA. Progressive suppression of motor evoked...

Table 1. Stimulation parameters in our hospital

<table>
<thead>
<tr>
<th></th>
<th>constant-current</th>
<th>constant-voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulus count</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Number of train</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stimulus interval (ms)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Stimulus rate (Hz)</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Record time (ms)</td>
<td>100-200</td>
<td>100-200</td>
</tr>
<tr>
<td>Stimulus duration time</td>
<td>0.2 msec</td>
<td>50 μsec</td>
</tr>
<tr>
<td>Filter (kHz)</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>Stimulus voltage</td>
<td>200 mA</td>
<td>500 V</td>
</tr>
</tbody>
</table>
Table 2. The decrease rates (%) for the constant-voltage and constant-current stimulations (across all total muscles and each time group). The operative time of short-time group is less than 81 minutes, and that of long-time group is more than 190 minutes.

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Number of muscles</th>
<th>Constant-current</th>
<th>Number of muscles</th>
<th>Constant-voltage</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>Interquartile Range</td>
<td>Median</td>
<td>Interquartile Range</td>
</tr>
<tr>
<td>Total muscles</td>
<td>851</td>
<td>26</td>
<td>2 - 67</td>
<td>992</td>
<td>8</td>
</tr>
<tr>
<td>Short-time group</td>
<td>191</td>
<td>23</td>
<td>-6 - 57</td>
<td>233</td>
<td>3</td>
</tr>
<tr>
<td>Long-time group</td>
<td>230</td>
<td>51</td>
<td>16 - 84</td>
<td>254</td>
<td>22</td>
</tr>
</tbody>
</table>
Table 3. The decrease rates (%) for the long-time and short-time groups

<table>
<thead>
<tr>
<th>Number of muscles</th>
<th>Short-time group</th>
<th>Long-time group</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Interquartile Range</td>
<td>Median</td>
</tr>
<tr>
<td>424</td>
<td>11</td>
<td>-20—41</td>
<td>484</td>
</tr>
</tbody>
</table>
Table 4. The decrease rates (%) for the constant-voltage and constant-current stimulations, according to limb (upper and lower limbs)

<table>
<thead>
<tr>
<th></th>
<th>Number of muscles</th>
<th>Constant-current</th>
<th></th>
<th>Number of muscles</th>
<th>Constant-voltage</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Median</td>
<td>Interquartile Range</td>
<td></td>
<td>Median</td>
<td>Interquartile Range</td>
</tr>
<tr>
<td>Short-time</td>
<td>191</td>
<td>23</td>
<td>-6 - 57</td>
<td>233</td>
<td>3</td>
<td>-34 - 27</td>
</tr>
<tr>
<td>group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-time</td>
<td>230</td>
<td>51</td>
<td>16 - 84</td>
<td>254</td>
<td>22</td>
<td>-6 - 56</td>
</tr>
<tr>
<td>group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upper limb=deltoid+abductor pollicis brevis muscles.

Lower limb=quadriceps+tibialis anterior+gastrocnemius+abductor hallucis muscles.
Table 5. The comparison of the number of muscles whose amplitude at final CMAPs was beyond the alarm point (less than 70% of initial CMAPs) between constant-current and constant-voltage

<table>
<thead>
<tr>
<th></th>
<th>Number of total muscles</th>
<th>Less than 70% of initial CMAPs</th>
<th>Rate(%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant-current</td>
<td>851</td>
<td>201</td>
<td>24</td>
<td><0.01</td>
</tr>
<tr>
<td>Constant-voltage</td>
<td>992</td>
<td>69</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Flow diagram of patient enrollment and inclusion. The initial pool consisted of 258 patients; data from the final group of 88 individuals was analyzed.
Figure 2. The stimulation condition is depicted and the muscles recorded during the transcranial electrical stimulation of motor-evoked potentials for monophasic stimulation are shown.

AH, abductor hallucis; APB, abductor pollicis brevis; Del, deltoid; GC, gastrocnemius;

ISI, interstimulus interval; Rt, right; Quad, quadriceps; TA, tibialis anterior
Fig. 3. Anatomical locations according to the international 10–20 system.