Pro-chemotherapeutic effects of antibody against extracellular domain of claudin-4 in bladder cancer

Masaomi Kuwada a, b, Yoshitomo Chihara b, Yi Luo a, Xiangru Li c, Yukiko Nishiguchi a, Rina Fujiwara a, Takamistu Sasaki d, Kiyomu Fuji a, Hitoshi Masaomi Kuwada a, b, Yoshitomo Chihara b, Hiroki Kuniyasu a.*
Masuo Kondoh c, Hiroki Kuniyasu a, Kiyohide Fujimoto b, Masuo Kondoh c, Hiroki Kuniyasu a, b

a Department of Molecular Pathology, Nara Medical University, Nara 634-8521, Japan
b Department of Urology, Nara Medical University, Nara 634-8521, Japan
c Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
d Department of Gastrointestinal Surgery, Fukuoka University School of Medicine, Fukuoka 7-45-1, Japan

Article History:
Received 22 June 2015
Revised in revised form 12 August 2015
Accepted 20 August 2015

Keywords:
Claudin
Tight junction
Antibody therapy
Microenvironment

Introduction
Bladder cancer displays an aggressive phenotype in the muscle-invasive phase, and is associated with a high mortality rate. Therefore, novel molecular therapeutic targets are needed to improve patient survival. A monoclonal antibody against the extracellular domain of the claudin-4 (CLDN4) tight junction protein was established by immunizing rats with a plasmid vector encoding human CLDN4. A hybridoma clone, producing a rat monoclonal antibody recognizing CLDN4 (clone 4D3), was obtained. Immunohistochemistry by using the 4D3 antibody showed that CLDN4 expression was associated with local invasion, nodal metastasis, distant metastasis, and advanced stage in 86 cases of bladder cancer. The 4D3 antibody inhibited growth, invasion, and survival, associated with abrogation of the intratumoral microenvironment; lowered concentrations of epidermal growth factor and vascular endothelial growth factor were found in three-dimensional cultures of T24 and RT4 cells. In combination with cisplatin therapy, 4D3 enhanced cisplatin cytotoxicity by increasing cellular permeability, leading to increased intracellular cisplatin concentrations. In mouse models of subcutaneous tumors and lung metastasis, 4D3 enhanced tumor growth inhibition, alone and with concurrent cisplatin treatment. The anti-tumor activity of the newly established 4D3 antibody suggests that it may be a powerful tool in CLDN4-targeting therapy, and in combination with chemotherapy.

Hypothetical structure of claudin-4 (CLDN4) protein containing signaling molecules and lipids, which maintains the polarized state of epithelial cells. Claudins (CLDN) are protein components of tight junctions, which, together with adherens junctions and desmosomes, functionally seal adjacent cells together [7]. Twenty-seven different, but closely related, CLDN family members have been identified [8], all of which are thought to vary in expression, depending on location and cell type [9]. Tight junctions play a pivotal role in the maintenance of cell polarity by prevention of lateral diffusion of membrane proteins containing signaling molecules and lipids, which maintains the differential composition of the apical and basolateral domains [10], and, subsequently, epithelial permeability and polarization [8]. Therefore, tight junctions are thought to be involved in the regulation of proliferation, differentiation, and other cellular functions. CLDN4 is commonly expressed in epithelial tissues and solid tumors. Overexpression of CLDN4 is found in several types of epithelial malignancies, including pancreatic and ovarian cancer.
CDN4 expression is associated with malignant phenotypes, including metastasis, in cancer cells [9,17,18]. Ovarian cancer cells expressing CDN4 show increased invasion, motility, and survival [19], and CDN4 overexpression has been observed in advanced ovarian cancer [12]. CDN4 expression has also been associated with a more invasive phenotype in pancreatic intraductal papillary mucinous neoplasms [16].

CDN4 is thought to be a relevant molecular marker for diagnosis and treatment of epithelial cancers [17,18], and also a promising therapeutic target for drug development [20,21]. In the present study, we established a monoclonal antibody (mAb) specific to the extracellular domain of CDN4, to target CDN4-expressing cells. The anti-tumor characteristics of the mAb were examined in bladder cancer models.

Materials and methods

Cells and reagents

T24 and RT4 human bladder cancer cell lines were purchased from the American Type Culture Collection (ATCC; Manassas, VA, USA). Human CLDN (CLDN)-expressing HT1080 cells were cultured in Dulbecco's modified Eagle's medium (DMEM), supplemented with 10% fetal bovine serum (FBS). Mouse CDN (mCDN) -expressing L cells, kindly provided by Dr. S. Tsukita (Kyoto University, Japan), were cultured in modified Eagle's medium (MEM) containing 10% FBS.

Cell growth and apoptosis

Cell growth was assessed using a tetrazolium (MTT) dye assay, as previously described [22]. Apoptosis was assessed by examination of 2000 cells, stained with Hoechst 33342 dye (Life Technologies, Carlsbad, CA, USA), using a fluorescent microscope.

Chamber invasion assay

A modified Boyden chamber assay was performed to examine the in vitro invasion of colon cancer cells [23]. Following incubation at 37 °C for 24 hours, the filters were carefully removed from the inserts, stained with hematoxylin for 10 min, and mounted on microscopic slides. The number of stained cells in each insert was counted at 100-fold magnification. Invasion activity was quantified by calculating the average number of cells per insert well. These experiments were performed in triplicate.

Reagents

CM5 sensor chips, amine-coupling reagents (N-ethyl-N[3-dimethylaminopropyl]carbodiimide [EDC]), N-hydroxysuccinimide [NHS], and ethanolic-hemicyanine-HCl, and BSA-EP (10 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM EDTA, and 0.05% surfactant P20) were obtained from GE Healthcare (Buckinghamshire, UK). Ciploatin (CIP) was purchased from NovoPhos (Bedford, OH, USA). All reagents used were of research grade.

Animals

Four-week-old female BALB/c-Slc-nu/nu mice and BALB/cCrisc mice were purchased from SLC Japan (Shizuoka, Japan). The mice were maintained according to the institutional guidelines approved by the Committee for Animal Experimentation of Nara Medical University, in accordance with the current regulations and standards of the Ministry of Health, Labor, and Welfare. Their sex and age were designated at each experimental method.

Production of anti-human CLDN4 monoclonal antibody

Wistar rats were immunized with a eukaryotic expression vector encoding the full-length CDN4 cDNA, and the production of anti-CDN4 mAb in the serum was assessed by using fluorescence-activated cell sorter (FACS) analysis using CDN4-expressing HT1080 cells. B cells were isolated from rats with an increased serum titer of anti-CDN4 antibody, and the cells were fused with myeloma cells (P3U1), resulting in the production of hybridoma cells. Anti-CDN4 mAb-producing hybridoma cells were selected by using FACS, by their ability to bind to transient CDN4-expressing 293T cells and not to unexpressing 293T cells, using fluorescent-labeled goat anti-rat IgG (H+L) (Irkergard and Peary Laboratories, Gaithersburg, MD, USA) as a secondary antibody, resulting in the isolation of a rat anti-CDN4 mAb (clone 4D3). The immunoglobulin class was determined using a rat immunoglobulin isotyping enzyme-linked immunosorbent assay (ELISA) kit (BD Biosciences, San Jose, CA, USA).

Preparation of CDN4 proteins

Recombinant hCDN4 protein was prepared by using Sf9 cells infected with recombinant baculovirus, as previously reported [24]. Briefly, the c-terminus tagged hCDN4 CDN4 fragment was cloned into pFastBac, and recombinant baculovirus was generated by using a Bac-to-Bac baculovirus expression system (Life Technologies). Sf9 cells were infected with the recombinant baculovirus. After 52-56 h of infection, the cells were harvested by centrifugation. The cells were washed with phosphate-buffered saline (PBS) and resuspended in 10 mM Heps buffer (pH 7.4, 120 mM NaCl) with protease inhibitor tablets (Complete Mini, EDTA-free) (Roche Applied Science, Indianapolis, IN, USA). 1 mM phenylmethylsulfon fluoride, and 20 units/mL DNase I. The cells were lyed by the addition of 2% N-dodecyl-b-D-maltoside (DDM) and subsequently centrifuged. The resultant supernatant was applied to HiTrapTM HP (GE Healthcare), and CDN4 was eluted using imidazole. The solution containing CDN4 was exchanged for PBS containing 0.2% DDM, by gel filtration with a HiTrap Desalting column (GE Healthcare). Purification of CDN4 was confirmed by sodium dodecyl sulfate polyacrylamide gel-electrophoresis (SDS-PAGE), followed by staining with Coomassie brilliant blue (CBB).

Surface plasmon resonance analysis

Surface plasmon resonance (SPR) measurements were performed using a Biacore T200 instrument (GE Healthcare). Amine-coupling chemistry was used to immobilize anti-rat mAb on a CMS sensor chip surface in a Biacore T2000, and equilibrated with PBS-EP. The carboxymethyl surface of the CMS chip was activated with a 1:1 ratio of 0.4 M EDC and 0.1 M NHS. Anti-rat mAb was diluted to 20 μg/mL in 10 mM acetate (pH 4.5) and applied to the chip surface. Excess activated groups were blocked by using 1 M ethanolamine (pH 8.5). Approximately 5000 RU of anti-rat mAb was immobilized. The culture supernatant of 4D3-producing hybridoma cells was then applied to the chip surface for 2 min. hCDN4 protein was serially diluted (10, 100, 200, 300, and 500 μg/mL) in PBS-EP. Within a single binding cycle, hCDN4 protein was applied sequentially, in order of increasing concentration, on both the ligand and the reference surfaces. The reference surface, an unmodified flowcell, was used to correct for systematic noise and instrumental drift. The sensograms were globally fitted by using a 1:1 binding model to determine association rate (ka) , dissociation rate (kd) , and equilibrium dissociation constant (KD) values, using Biacore T200 Evaluation Software (GE Healthcare).

Preparation of rat anti-human CLDN4 monoclonal antibody

Eight-week-old female BALB/c-Slc-nu/nu mice (SLC) were intraperitoneally administered with pristane as an immunological adjuvant, and 1 x 10^6 4D3-producing hybridoma cells. Antibody was collected, and the mAb (4D3) was purified by using Aff-Gelope [25]. The mAb was diluted into PBS, and the protein concentration was determined by measuring absorbance at 280 nm. The purity of the mAb was confirmed by SDS-PAGE, followed by staining with CBB.

CDN4 specificity analysis

To analyze specific binding of 4D3 to CLDN-expressing cells, hCDN4-expressing HT1080 cells and mCDN4-expressing L cells were detached and incubated with 5 μL of 4D3, followed by treatment with secondary fluorescein-conjugated goat anti-rat IgG (H+L) (Dilkegaard and Peary Laboratories). The mAb-bound cells were analyzed by using FACSCalibur and CellQuestPro software (BD Biosciences).

Patients

Eighty-six cases of bladder cancer that had been treated with transurethral resection or total cystectomy in Nara Medical University Hospital were randomly selected. Basic patient information is summarized in Table 1. As written informed consent was not obtained, any identifying information was removed from the samples prior to analysis, to ensure strict privacy protection (unlinkable anonymization). All procedures were performed in accordance with the Ethical Guidelines for Human Genome/Gene Research enacted by the Japanese Government, which was approved by the Ethics Committee of Nara Medical University (Approval Number 937).

Immunohistochemistry

Consecutive 4-μm sections were immunohistochemically stained using the immunoperoxidase technique described previously [26]. 4D3 was used at a concentration of 0.2 μg/mL. Secondary antibodies (Medical and Biological Laboratories, Nagoya, Japan) were used at a concentration of 0.2 μg/mL. Tissue sections were colored with diaminobenzidine hydrochloride (DAB), Glastrup, Denmark), and immunoperoxidase technique described previously [25] was used. The immunohistochemical reaction was visualized using diaminobenzidine (DAB) (Dako, Glastrup, Denmark), and the staining was developed using diaminobenzidine (DAB) (Dako, Glastrup, Denmark). The stainings were then counterstained with hematoxylin.

3. Statistical analysis

We count the cells with the immunoreaction on the cytoplasmic membrane. Staining strength was scored from 0 to 3 (a score of 1 was used to describe the expression level in normal urothelium). The staining index was calculated as the staining score multiplied by the staining area (SA), and the staining strength was defined as follows: none (index, 0), weak (index, 1-100), medium (index, 101-200), and high (index, 201-300).
Table 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CLEODN4 expression</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weak</td>
<td>Medium</td>
</tr>
<tr>
<td>Number</td>
<td>19</td>
<td>47</td>
</tr>
<tr>
<td>Age</td>
<td>60 (37-82)</td>
<td>63 (37-95)</td>
</tr>
<tr>
<td>Sex (male:female)</td>
<td>12:6</td>
<td>41:6</td>
</tr>
<tr>
<td>Local invasion (pT)</td>
<td>pTa/pTis-pT1</td>
<td>7</td>
</tr>
<tr>
<td>pT2</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>pT3a</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>pT3b</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>pT4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nodal metastasis (pN)</td>
<td>N0</td>
<td>19</td>
</tr>
<tr>
<td>N1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Distant metastasis (pM)</td>
<td>M0</td>
<td>19</td>
</tr>
<tr>
<td>M1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stage</td>
<td>I</td>
<td>7</td>
</tr>
<tr>
<td>II</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>III</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>IV Grade</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Low</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>High</td>
<td>8</td>
<td>25</td>
</tr>
</tbody>
</table>

1. TNM classification criteria were used for pT, pN, pM, stage, and grade [25].
2. NS, not significant.

Reverse transcription-polymerase chain reaction

Reverse transcription-polymerase chain reaction (RT-PCR), using 0.5 μg total RNA extracted using an RNeasy Kit (Qiagen, Germany), was used to assess human CLEODN4 mRNA expressions. The primer sets for human CLEODN4 amplification were as follows: forward 5'-CTT CAG GTA GGT GCT ACA GTA MA-3' and reverse 5'-ACC AGG GAC TCG TAC ACC TT-3' (NCBI Reference Sequence: NM_001305.4; synthesized by Sigma Genosys, Shanghai, China). PCR products were electrophoresed in a 2% agarose gel and stained with ethidium bromide.

Quantitative reverse transcription-polymerase chain reaction

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed by using StepOne Real-Time PCR System with Fast SYBR® Green Master Mix (Applied Biosystems, Life Technologies). The relative standard curve quantification method was used for analysis [27]. PCR conditions were used according to the manufacturer’s instructions. ACTB mRNA was amplified as an internal control (GenBank Accession No. NM_001101).

Immunohistochemistry

Whole-cell lysates were prepared as previously described [23], and lysates (50 μg) were subjected to immunoblot analysis using SDS-PAGE (12.5%), followed by electrotransfer onto nitrocellulose filters. The filters were incubated with primary antibodies, followed by peroxidase-conjugated IgG antibodies (MBL, Nagoya, Japan). Anti-tubulin antibody was used to assess the levels of protein loaded per lane (Oncoimmunology, Tokyo, Japan). The complex was visualized using an ECL Western-blot detection system (Amersham, Aylesbury, UK).

Intracellular platinum

T24 cells (1 x 10⁶) were digested with proteinase K for 2 h at 45°C, followed by treatment with 65% trichloroacetic acid overnight at 80°C. The suspension was analyzed using a flameless atomic absorption spectrometer (AAS) to determine the platinum concentration (λ = 265.9 nm), using a AAS platinum standard (Sigma-Aldrich, Saint Louis, MO, USA).

In vitro metabolism assay

To carry out multiple cell layer insert assays, T24 cells (1 x 10⁶) were seeded on the bottom of uncoated insert wells (pore size: 3 μm; diameter: 5 mm; BD Biosciences), and the culture medium was changed to DMEM with 2% bovine serum albumin (BSA; Sigma-Aldrich), peroxidase-conjugated mouse IgG (IgG-PO; 0.5 μg/mL; DAKO) was added to the insert chambers. After cells were treated with 4D3 antibody for 6 h, media from the inserts and lower chambers were collected into a 96-well ELISA plate, which was color-developed with the addition of PO (0.5 μg/mL) or TMB (10 μL/v). The reaction was stopped by the addition of 2N H₂SO₄, and the optical density at 450 nm (OD450) was measured.

An InVitro Vascular Permeability Assay Kit (Trevigen Inc. Gaithersburg, MD) was used to determine permeation of fluorescein isothiocyanate (FITC)-dextran in a monolayer of T24 or RT4 cells, according to the manufacturer’s instructions. Cytochalasin B (1 μg/mL) was used as a positive control [29].

Enzyme-linked immunosorbent assay

ELISA kits were used to measure protein concentrations of epithelial growth factor (EGF) (R&D Systems Inc., Minneapolis, MN, USA), and vascular endothelial growth factor (VEGF) (Abcam, Cambridge, UK), according to the manufacturer’s instructions.
Fig. 1. CLDN specificity analysis. 4D3 binding to HT1080 cells expressing hCLDN1, 2, 3, 4, 5, 6, 7, 8, and 9, and mCLDN4-expressing L-cells were examined by using FACS Calibur. Only hCLDN4-expressing HT1080 cells showed a high affinity for 4D3. (B) Immunoprecipitation by 4D3. CLDN4 was detected in 4D3-precipitant by 4D3 detection. CLDN1, 3, 7 were not detected in 4D3-precipitant. (C) Expressions of hCLDN1, 2, 3, 4, 5, 6, 7, 8, and 9 were examined by western blotting in parent HT1080 cells and CLDN4-transfected HT1080 cells treated with control or CLDN4 siRNAs. siRNA; short interference RNA, Ctr; control mixed siRNA, CL-4: CLDN4 siRNA, IP; immunoprecipitation, HC; heavy chain, LC; light chain.

Statistical analysis

Statistical significance was calculated by using two-tailed Fisher's exact, Chi-square, and unpaired Mann–Whitney tests by using InStat software (Graphpad, Los Angeles, CA, USA). Survival curves were calculated by using a Kaplan–Meier model (Statview 4.5, Abacus Concepts, Inc., Berkeley, CA, USA). Differences in survival were calculated by using the Cox proportional hazard model (Statview 4.5). Statistical significance was defined as a two-sided p-value of < 0.05.

Results

Creation of an anti-hCLDN4 monoclonal antibody

We generated an anti-CLDN4 mAb (4D3) by genetic immunization using a full-length CLDN4 cDNA expression vector. Analysis of antibody isotypes revealed that the 4D3 isotype was IgG2b. SPR analysis of 4D3 showed the following binding kinetics: k\text{a} value, 1.99 \times 10^{4} 1/Ms; k\text{d} value, 8.27 \times 10^{-4} 1/s, and K\text{D} value, 41.5 nM. 4D3 bound to hCLDN4-expressing cells, but not to hCLDN1, 2, 3, 5, 6, 7, 9, or mCLDN4-expressing cells (Fig. 1A).
To confirm the specificity of the 4D3 antibody, an immunoprecipitation was performed (Fig. 1B). Lysate of T24 cells were immunoprecipitated with 4D3 or anti-CLDN1 antibody (2C1). CLDN4 was detected by 4D3 in the 4D3-precipitant alone. CLDN4 knockdown abrogated immunoprecipitation. Moreover, CLDN1, 3, or 7 was not detected in 4D3-precipitants by their specific antibodies. Therefore, 4D3 is a specific mAb to hCLDN4.

We also examined the endogenous protein expression levels of hCLDN1, 2, 3, 4, 5, 6, 7, 8, and 9 in HT1080 cells, which were treated with control siRNA or CLDN4 siRNA (Fig. 1C). The constitutive expression of hCLDN4 was undetectable in HT1080 cells. HT1080 cells transfected with human CLDN4 gene (HT1080-hCLDN4 cells), were treated with control siRNA or CLDN4 siRNA. CLDN4 expression was disappeared in CLDN4-knockdowned cells, whereas the expressions of hCLDN1, 2, 3, 5, 6, 7, 8, and 9 were not affected by CLDN4 knockdown.

Expression of CLDN4 in human bladder cancer detected by the 4D3 monoclonal antibody

4D3 detects the expression of CLDN4 by binding to its extracellular domain, in contrast to other available anti-CLDN4 antibodies. CLDN4 was detected at intercellular borders in non-cancerous urothelium and low-grade/non-invasive cancer (Fig. 2A–B), whereas it was overexpressed and located at the cytoplasmic membrane and in the cytoplasm in high-grade, invasive, and metastasizing cancers (Fig. 2C–D). In contrast, unimmunized rat IgG showed no signals (Fig. 2E). Results from the examination of 86 bladder cancer tumors are shown in Table 1. CLDN4 expression was significantly associated with local invasion (pT, P = 0.0123), nodal metastasis (pN, P = 0.0059), distant metastasis (pM, P = 0.0341), and pathological stage (P = 0.0011), but not with histological grade. Especially, the two cases of pM1 showed metastasis to the bone and the lung. The mean staining index (strength x area) of CLDN4 in the two cases (275 ± 7) expressions were significantly higher than that in the pM0 cases (146 ± 69) (P = 0.0101).

Effect of 4D3 on bladder cancer cells

The human bladder cancer cell lines, RT4 (low-grade cancer derived) and T24 (high-grade cancer derived) expressed CLDN4 mRNA and protein (Fig. 3A). Cell growth and invasion of R14 and T24 cells were modestly inhibited by 4D3 in a dose-dependent manner, whereas apoptosis was increased by 4D3 in a dose-dependent manner (Fig. 3B–D). Multicellular assays showed that intracellular EGF concentration was significantly reduced by 4D3 treatment (Fig. 3E). Subsequent phosphorylation of EGFR and ERK1/2 was also decreased by 4D3 treatment (Fig. 3F). In the same assay, intracellular VEGF concentration was significantly reduced by 4D3 treatment (Fig. 3G). 4D3-treated cells showed lower mRNA expression of VEGF and HIF-1α, which suggests an improvement in hypoxic conditions (Fig. 3H).

Effects of 4D3 on in vitro bladder cancer cells concurrently treated with cisplatin

CDDP is the most common chemotherapeutic agent used in bladder cancer treatment, and we examined the effects of concurrent 4D3 and CDDP treatment on bladder cancer cells (Fig. 4). CDDP caused growth inhibition of T24 and RT4 cells in a dose-dependent manner. Treatment with 4D3 enhanced the inhibition of cell growth caused by CDDP, in both cell lines (Fig. 4A–B). Intracellular platinum concentration was significantly increased in cells treated with 4D3 compared to those without 4D3 treatment (Fig. 4C–D). Using a multiple cell layer permeability assay, peroxidase-labeled IgG were added to the upper chamber and permeated through the T24 cell layer into the lower chamber, in a 4D3 dose-dependent manner (Fig. 4E). In contrast, a control IgG did not affect the permeability. Using a monolayer permeability assay, FITC-dextran was shielded by T24 or RT4 cell layers. 4D3 treatment inhibited shielding at the same levels as non-cell or cytochalasin B treatment (Fig. 4F).
Effect of 4D3 on in vivo bladder cancer cells concurrently treated with cisplatin

We next examined the effect of concurrent 4D3 and CDDP treatment on subcutaneous tumors in nude mice (Fig. 5A). Administration of 4D3 and CDDP three times in week 1 inhibited tumor growth of subcutaneous T24 cell tumors. In tumors, mice treated with 4D3 alone showed 23% inhibition of tumor growth compared to those with untreated tumors. Mice treated with CDDP or CDDP combined with 4D3 (CDDP+4D3) showed tumor growth inhibition of...
52% and 70%, respectively. In the lung metastasis model, treatment with 4D3, CDDP, or CDDP+4D3 decreased the number of lung metastasis by 29%, 50%, and 74%, respectively, at week 4 (Fig. 5B).

The localization of the administrated 4D3 was examined by detection of ICG-labeled 4D3 in whole mouse imaging (Fig. 5C) and of FITC-labeled 4D3 in the tumor tissue by fluorescent microscopy in frozen section (Fig. 5D). 4D3 accumulation at the subcutaneous tumor was found by whole mouse imaging. 4D3 immunoreactivity was observed on the cell-cell boundary, which is compatible to the tight junction.

To confirm the enhancement of permeability of cancer tissue, FITC-dextran was administrated for subsequent detection in the tumors (Fig. 5E–F). FITC-dextran infiltrated the intracellular spaces more prominently in 4D3-treated mice than in IgG-treated control mice (Fig. 5E). The permeated areas were also significantly larger in 4D3-treated mice than that in IgG-treated control mice (Fig. 5F).

The effect of the treatment was examined by analyzing survival in mice (Fig. 5F). In the T24 subcutaneous tumor model, survival was significantly improved by CDDP or CDDP+4D3 treatment (Fig. 5G). The survival rates at day 28 were 0%, 0%, 33% and 50% in the untreated mice, and 4D3, CDDP, and CDDP+4D3-treated mice, respectively. The mice treated with CDDP+4D3 showed significantly improved survival than that in the untreated mice (P<0.01).
Fig. 5. Effect of concurrent treatment with 4D3 and cisplatin in a mouse model. (A) Treatment of subcutaneous T24 cell tumors with cisplatin (CDDP) and/or 4D3 (yellow arrow, administration). (B) Treatment of a lung T24-cell metastasis model with CDDP and/or 4D3. (C, D) Fluorescent examination of T24 subcutaneous tumor. (C) ICG-labeled 4D3 was detected by whole mouse fluorescence imaging. (D) Frozen section of the tumor was examined at 6 h after administration of FITC-dextran bolus injection (bar, 50 μm). (E) FITC-positive area of subcutaneous tumors treated with or without 4D3 (1 mg/kg). (F) Survival of mice with T24 subcutaneous tumors (error bar, standard deviation calculated from 5 mice; *P<0.01, **P<0.001, #P<0.0001).

Discussion

CLDN is an essential protein in maintaining cell polarity and molecular trafficking, via tight junctions. In this study, we established an antibody to the extracellular domain of CLDN4, which is only the second antibody of this kind [31]. When CLDN expression is increased, the barrier function of cancerous epithelia changes, and it often displays a disorganized arrangement of tight junction strands, with increased permeability to paracellular markers [32]. Dysregulation of these functions contributes to initiation and progression of cancer [8]. Altered CLDN expression has been reported in many types of epithelial cancers in a stage- and tumor-specific manner [8,32], and the present study shows overexpression of CLDN4 in bladder cancer.

Our data demonstrates that the 4D3 anti-CLDN4 antibody inhibited growth, invasion, and survival of cancer cells in the condition of in vitro or of the mouse tumor models. Considering that anti-CLDN4 antibody, 4D3 recognized the extracellular loops 1 and 2, binding of 4D3 to CLDN4 is thought to block homophilic trans-interaction, which forms gap between 2 strands of tight junctions. The gap abrogates barrier- and fence-functions of tumor tissues [33,34]. We then evaluated the loss of tight junctions in cancer tissue...
using two different methods. First, we examined the confinement of EGF, a cancer-stimulating growth factor, by tight junctions by using microcarrier beads. Treatment with the 4D3 anti-CLDN4 antibody allowed leakage of EGF from the beads, which suppressed phosphorylation of EGR1 and ERK1/2 and also expression of MMP9. Thus the tumor growth and invasion might be inhibited by 4D3 treatment. In contrast, CLDN4 maintains the internal environment of the tumor, which induces HIP-1α and VEGF due to the hypoxic condition. CLDN4 thus affects the expression and secretion of these factors and also the signal pathway by an indirect manner.

Second, we examined the diffusion of anti-cancer molecules into the intercellular space treated with 4D3. Anti-CLDN4 antibody treatment increased permeability of multiple cell layers allowing permeation of CDDP into tumor tissue, and subsequent intracellular accumulation. These effects inhibit cancer cells and increase the efficacy of anti-cancer drugs. It has been reported that an increase in vascular permeability leads to enhanced anti-cancer drug concentrations in tumor tissue [35], but as CLDN4 is not involved in endothelial tight junctions [36], we believe that the effect of the anti-CLDN4 antibody reflects the increased permeability of cancer cell tight junction. CLDN4 has also been reported to regulate sensitivity to CDDP by controlling the expression of copper and the CDDP influx transporter, CTR1 [37], but these modes of CDDP regulation by CLDN4 have not been examined in this study.

In some types of malignancies, an intrinsic decrease in CLDN4 expression has been associated with cancer cell discohesion, invasion, and metastasis [38,39]. Knockdown of CLDN4 was shown to reduce tight junction formation, transepithelial resistance, and the paracellular flux of dextran, which enhances migration and invasion in in vitro assays, and increases lung metastasis [38]. In contrast, our data did not detect any effects of inhibition of CLDN4 by 4D3 in cancer cells with a metastatic phenotype. We also found that advanced cases of bladder cancer expressed CLDN4 at higher levels than early cases, suggesting that CLDN4 overexpression may be associated with tumor progression in bladder cancer, a different role than that associated with ovarian and colorectal cancer [38,39]. Our data suggest that the role of CLDN4 in sustaining the internal microenvironment of the tumor might be advantageous for bladder cancer. Increased CLDN4 expression is epigenetically regulated by hypermethylation of CLDN4 in gastric cancer [40]. In contrast, during ovarian tumorigenesis, derepression of CLDN4 expression correlates with loss of trimethylated histone H3 lysine 27 and H4 lysine 20, in addition to DNA hypermethylation [41].

CLDN4 is a widely distributed molecule in various epithelial tissues. Then toxicity by the targeting of CLDN4 is an essential issue. Because 4D3 antibody recognizes only human CLDN4 but not CLDN4 of rodent or other animals, evaluation of the toxicity using animals is not relevant. In literature, CLDN4 knockout mouse was reported [42]. The CLDN4 knockout mice show urothelial hyperplasia and lethal hydrolepsy, however, hetero-deficient mice do not show above anomaly. From the results, in the normal tissues, CLDN4 deficiency might result none or traceable dysfunction of tight junction. *Clostridium perfringens* toxin binds to both CLDN4 and CLDN3, and it provides pore formation in the plasma membrane [43], which are causes of the strong cytotoxicity. For confirmation of safety of the antibody, evaluation using primate models is thought to be good for preclinical examination.

Therapeutic targeting of CLDN4 has increasingly been proposed in the literature [44-46]. Several reports have recommended the use of bacterial toxins, such as *C. perfringens* enterotoxin (CPE) and the C-terminal domain of CPE (C-CPE) as CLDN4 binders [44,45]. It has also been demonstrated that CLDN4 targeting is effective for treatment of cancer metastasis, by using C-CPE fused to a protein synthesis inhibition factor [45]. We have also established bispecific antibodies to CLDN3 and 4, which show anti-tumor activity in vivo and in vitro experiments [47]. The anti-tumor activity of the newly established 4D3 anti-CLDN4 antibody that we have demonstrated in this study, suggests that it might be effective in CLDN4-targeting therapy, alone and in combination with chemotherapy.

Acknowledgements

Health and Labour Sciences Research Grant from the Ministry of Health, Labour and Welfare of Japan (12055223); Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (24390042); the Adaptable and Seamless Technology Transfer Program through Target-driven R&D, Japan Science and Technology Agency (AS242201694Q and AS251200905Q); the Takeda Science Foundation; the Platform Project for Supporting in Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science) from Japan Agency for Medical Research and Development (AMED, 15653182).

Conflict of interest

None.

References

The text on the page appears to be a continuation of a scientific discussion, possibly on the role of Claudin-4 in cancer biology. The text references several studies involving Claudin-4 and its potential as a therapeutic target for various cancers, including pancreatic and ovarian cancers. The text also touches on the molecular mechanisms involved in cancer growth and metastasis, such as the role of Claudin-3 and Claudin-4 in the regulation of tumor growth and metastases.

For example, one study mentions the expression of Claudin-1, which blocks hepatitis C virus infection in a mouse model. Another study describes how Claudin-4 modulates the mucosal absorption of a biologically active peptide.

The text also discusses the use of monoclonal antibodies against Claudin-4 in cancer therapy, highlighting the potential for targeted anticancer nanomedicines. The text seems to be part of a larger discussion on the therapeutic efficacy of monoclonal antibodies against Claudin-4 for similarity to occludin, and their potential applications in pancreatic and ovarian cancers.

Overall, the page provides a detailed overview of the current research on Claudin-4's role in cancer biology, emphasizing its potential as a target for personalized cancer treatment.