
Biochemistry and Biophysics Reports 2 (2015) 123–131
Contents lists available at ScienceDirect
Biochemistry and Biophysics Reports
http://d
2405-58

Abbre
degener
assay; F
recepto
PCR, rev
RNA; SP
ynucleo
factor; W
ulfophe

n Corr
E-m
journal homepage: www.elsevier.com/locate/bbrep
Human retinal pigment epithelial cell proliferation by the combined
stimulation of hydroquinone and advanced glycation end-products
via up-regulation of VEGF gene
Hiroki Tsujinaka a,b, Asako Itaya-Hironaka a, Akiyo Yamauchi a, Sumiyo Sakuramoto-Tsuchida a,
Hiroyo Ota a, Maiko Takeda a, Takanori Fujimura a, Shin Takasawa a,n, Nahoko Ogata b

a Department of Biochemistry, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8521 Nara, Japan
b Department of Ophthalmology, Nara Medical University, Kashihara, 634-8522 Nara, Japan
a r t i c l e i n f o

Article history:
Received 25 February 2015
Received in revised form
12 May 2015
Accepted 18 May 2015
Available online 29 May 2015

Keywords:
Age-related macular degeneration
Advanced glycation endproduct(s)
Hydroquinone
Retinal pigment epithelial cells
Vascular endothelial growth factor
x.doi.org/10.1016/j.bbrep.2015.05.005
08/& 2015 The Authors. Published by Elsevier

viations: AGE, advanced glycation endproduc
ation; BSA, bovine serum albumin; ELISA, enz
CS, fetal calf serum; HQ, hydroquinone; IdU, 5ʹ
r for advanced glycation endproduct; RPE, ret
erse transcription polymerase chain reaction
1, specificity protein 1; SR, scavenger recepto
tidyl transferase dUTP nick end labeling; VEGF
ST-8, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitr

nyl)-2H-tetrazolium monosodium salt
esponding author. Fax: þ81 744 24 9525.
ail address: shintksw@naramed-u.ac.jp (S. Tak
a b s t r a c t

Although recent research showed that advanced glycation endproduct (AGE) and hydroquinone (HQ) are
related to the pathogenesis of age-related macular degeneration (AMD), the mechanism how AGE and
HQ induce or accelerate AMD remains elusive. In the present study, we examined the effects of AGE and
HQ on changes of human retinal pigment epithelial (RPE) cell numbers and found that the viable cell
numbers were markedly reduced by HQ by apoptosis and that AGE prevented the decreases of HQ-
treated cell numbers by increased replicative DNA synthesis of RPE cells without changing apoptosis.
Real-time RT-PCR revealed that vascular endothelial growth factor (VEGF)-A mRNA was increased by HQ
treatment and the addition of HQþAGE resulted in a further increment. The increase of VEGF secretion
was confirmed by ELISA, and inhibition of VEGF signaling by chemical inhibitors and small interfering
RNA decreased the HQþAGE-induced increases in RPE cell numbers. The deletion analysis demonstrated
that �102 to �43 region was essential for the VEGF-A promoter activation. Site-directed mutaions of
specificity protein 1 (SP1) binding sequences in the VEGF-A promoter and RNA interference of SP1 re-
vealed that SP1 is an essential transcription factor for VEGF-A expression. These results indicate that HQ
induces RPE cell apoptosis, leading to dry AMD, and suggest that AGE stimulation in addition to HQ
enhances VEGF-A transcription via the AGE-receptor for AGE pathway in HQ-damaged cells. As a result,
the secreted VEGF acts as an autocrine/paracrine growth factor for RPE and/or adjacent vascular cells,
causing wet AMD.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Age-related macular degeneration (AMD) is the major cause of
irreversible blindness in elderly patients in the world and the
numbers of people with AMD in 2020 are estimated to be 196
million, increasing to 288 million in 2040 in the world [1–3]. In the
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pathogenesis of AMD, this disease has been traditionally classified
into early and late stages with its dry and wet forms. The dry AMD
is defined as presence of drusen, retinal pigment epithelial (RPE)
cell changes, and progressive destruction of RPE cells and wet
AMD, usually associated with greater visual loss, is characterized
by choroidal neovascularization which is led by some angiogenic
cytokines such as vascular endothelial growth factor (VEGF). Al-
though the pathophysiology of AMD is not yet fully understood,
this multifactorial progressive disease likely arises from a complex
interaction of genetic and environmental risk factors [4–6]. Ci-
garette smoking and aging are one of the most significant risk
factors in the onset and severity of both dry and wet AMD. Ci-
garette smoke contains a large number of pro-oxidant compounds
among which benzene-1,4-diol (hydroquinone: HQ) is the most
abundant and important. HQ cause oxidative damage to RPE cells
in vitro and vivo and it might play a key role in the pathogenesis of
AMD [7–10]. Advanced glycation endproduct (AGE), which are
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generated by non-enzymatic reactions between glucose and pro-
tein called Maillard reaction, are linked to several age-related
diseases such as Alzheimer’s disease, atherosclerosis, diabetic
complications and AMD [11–15]. Hahn et al. recently demon-
strated that the incidence of AMD was significantly higher in the
diabetes mellitus patients with nonproliferative diabetic retino-
pathy [16]. While AGEs have been shown to stimulate inflamma-
tion and played the important role in other diseases, whether it
plays a similar role in AMD is not known. In the progression of the
AMD, VEGF is shown to be a most important cytokine [17]. Aber-
rant VEGF-A expression in RPE cells has been demonstrated to
promote the progression of the choroidal neovascularization as-
sociated with wet AMD. However, little is known about the mo-
lecular regulation of VEGF-A in RPE cells.

In the present study, we investigated effects of AGEs on cell
proliferation and VEGF-A expression in the HQ-damaged human
RPE cells. We also showed HQþAGEs induced VEGF-A transcrip-
tion via specificity protein 1 (SP1) in human RPE cells.
2. Material and methods

2.1. Cell culture

Two human RPE cell lines, ARPE-19 cells [18] and h1RPE7 cells
[19], were evaluated separately. ARPE-19 cells were grown in 1:1
mixture of Dulbecco's modified Eagles medium (Gibco

s

, Life
Technologies, Carlsbad, CA) and Ham's F12 medium (Gibco

s

)
containing 10% (v/v) fetal calf serum (FCS), 100 units/ml penicillin
G (Wako Pure Chemical Industries, Ltd., Osaka, Japan), and
100 mg/mL streptomycin (Wako). h1RPE7 cells were purchased
from European Collection of Cell Culture (Salisbury, UK) and were
grown in Ham's F10 medium (Gibco

s

) containing 20% (v/v) FCS,
2 mM glutamine (Nacalai tesque, Kyoto, Japan) and 1 μg/mL pur-
omycin (Gibco

s

). For the stimulation experiments, ARPE-19 cells
were treated with 300 mg/mL AGE-bovine serum albumin (BSA)
(Calbiochem

s

, Merck KGaA, Darmstadt, Germany), and/or 20 mM
HQ (Wako). h1RPE7 cells were treated with 300 mg/mL AGE-BSA
and/or 40 mM HQ.

2.2. Measurement of viable cell numbers by tetrazolium salt cleavage

ARPE-19 and h1RPE7 cells (0.5–2.0�104 cells/100 mL in 96-well
plate) were incubated with the addition of AGEs and/or HQ for
24 h. After the treatment, the viable cell numbers were de-
termined by a Cell Counting kit-8 (Dojindo Laboratories, Ma-
shikimachi, Japan) according to the manufacture's instructions as
described [20–22]. Briefly, WST-8 (2-(2-methoxy-4-nitrophenyl)-
3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetra-
zoliummonosodium salt) solution was added to cells in 96-well
plates, and the cells were incubated at 37 °C for 1–2 h. The optical
density of each well was read at 450 nm (reference wave length at
650 nm) using a SunriseTM microplate reader (Tecan, Männedorf,
Switzerland).

To investigate effects of VEGF-A on cell growth in RPE cells,
ARPE-19 cells (2.0�104 cells/100 mL in 96-well plate) were in-
cubated with AGEs, HQ, in the presence of VEGF-A/VEGF-A re-
ceptor inhibitors (10 mg/mL sulochrin (Sigma-Aldrich, St. Louis,
MO) [23], 3 nM Ki8751 (Calbiochem

s

) [24] or 50 nM CBO-P11
(Calbiochem

s

) [25]), or siRNA against VEGF or receptor for AGE
(RAGE) for 24 h. After the treatment, the viable cell numbers were
determined by a Cell Counting kit-8 (Dojindo) according to the
manufacture's instructions.
2.3. Measurement of apoptosis

ARPE-19 cells (0.5�104 cells/100 mL in 96-well plate) were
treated with AGEs and/or HQ for 12 h. After the treatment, apop-
tosis was detected by terminal deoxynucleotidyl transferase dUTP
nick end labeling (TUNEL) method using Apoptosis Screening Kit
(Wako) as described [21,22,26,27]. The optical density of each well
was read at 490 nm (reference wave length at 650 nm).

2.4. Measurement of replicative DNA synthesis

5ʹ-Indo-2ʹ-deoxyuridine (IdU) solution was added in the culture
medium of ARPE-19 cells (2.0�104 cells/100 mL in 96-well plate),
and after a 12 h incubation in the presence of AGEs and/or HQ, IdU
incorporation was measured using a DNA-IdU Labeling and De-
tection kit (Takara Bio Inc., Otsu, Japan) as described [26,27]. The
optical density of each well was read at 490 nm (reference wave
length at 650 nm).

2.5. Induction of VEGF-A messenger RNA

After a 12 h incubation with AGEs and/or HQ, ARPE-19 cells
were harvested, and total RNA was prepared as described
[21,22,28]. The PCR primers corresponding to nucleotides 1131–
1151 and 1186–1206 for human VEGF-A mRNA (NM_001025370),
305–329 and 374–395 for human specificity protein 1 (SP1) mRNA
(NM_138473), and 420–437 and 492–509 for human ß-actin
mRNA (NM_001101) were synthesized by Nihon Gene Research
Laboratories (NGRL) (Sendai, Japan) as described [20–22,26–31].
Real-time reverse transcription polymerase chain reaction (RT-
PCR) was performed using SYBR

s

Fast qPCR kit (KAPA Biosystems,
Wilmington, MA) and Thermal Cycle Dice

s

Real Time System
(Takara Bio Inc.) as described [20–22,28,30]. Target cDNAs were
cloned into pBluescript SK(-) plasmid (Stratagene, La Jolla, CA) and
sequential 10-fold dilutions from 102–107 copies/mL were pre-
pared. The serial dilutions were run to verify the specificity and to
test the sensitivity of the SYBR Green-based real-time RT-PCR. The
mRNA expression levels were normalized to the mRNA level of ß-
actin, which was used to account for difference in the efficiency of
reverse transcription between samples.

2.6. Measurement of VEGF-A in the culture medium

ARPE-19 cells (4.0�104 cells/1 mL in 24-well plate) were in-
cubated with the addition of AGEs and/or HQ for 12 h, and then
the medium was changed to a fresh medium. After additional 3 h
incubation with fresh medium, culture medium was collected and
the concentration of VEGF-A was measured by using a Human
VEGF Quantikine ELISA (enzyme-linked immunosorbent assay) kit
(R&D Systems Inc., Minneapolis, MN) according to the instructions
of supplier.

2.7. Construction of reporter plasmid and luciferase assay

The reporter constructs were prepared by inserting the 5ʹ-
flanking regions of human VEGF-A gene [32] (�2303 to þ50,
�1778 to þ50, �1293 to þ50, �826 to þ50, �605 to þ50,
�358 to þ50, �188 to þ50, �102 to þ50, �78 to þ50, �64 to
þ50, �43 to þ50) upstream of a firefly luciferase reporter gene in
pGL4.17[luc2/neo] vector (Promega, Madison, WI). Mutants of
potential binding sites for SP1 and their adjacent sequence (SP1
M1�7) were constructed on pGL4.17[luc2/neo] vector containing
the VEGF promoter by PCR. Promoter plasmids were transfected
into ARPE-19 and h1RPE-7 cells by using Lipofectamine™ 2000
(Life Technologies) as described [28]. In brief, ARPE-19 and h1RPE7
cells were seeded at 1�105 cells per well in 24-well plate and



Fig. 1. AGE partially prevented the loss of HQ-treated cell numbers by increases of replicative DNA synthesis. ARPE-19 cells (A) and hRPE7 cells (B) were incubated for 24 h
with HQ and/or AGE and viable cell numbers were measured by WST-8 assay. Data are expressed as means7SEM for each group (n¼4–6). (C) Apoptosis of ARPE-19 cells
treated with HQ and/or AGE. ARPE-19 cells were incubated with HQ and/or AGEs for 12 h and apoptosis was quantified by TUNEL method. Data are expressed as mean-
s7SEM for each group (n¼4). (D) Replicative DNA synthesis of ARPE-19 cells incubated with HQ and/or AGEs. ARPE-19 cells were treated with HQ and/or AGEs for 12 h and
replicative DNA synthesis were measured by IdU incorporation. Data are expressed as means7SEM for each group (n¼7).

Fig. 2. Induction of VEGF-A expression by the addition of HQ and/or AGE. (A) Expression of VEGF-A mRNA in ARPE-19 cells. ARPE-19 cells were treated with no addition, HQ,
AGEs or combinations for 12 h. The level of VEGF-A mRNAwas measured by real-time RT-PCR using β-actin as an endogenous control. Data are expressed as means7SEM for
each group (n¼4). (B) Concentrations of VEGF in the ARPE-19 culture medium were measured by ELISA. ARPE-19 cells were treated with no addition, HQ, AGEs or
combinations for 12 h. Data are expressed as means7SEM for each group (n¼4).
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Fig. 3. Inhibition of ARPE-19 cell proliferation by inhibition of VEGF signaling. (A) Effects of the VEGF inhibitors on cell proliferation. ARPE-19 were incubated with HQþAGEs
and three VEGF-A inhibitors, 10 mg/mL Sulochrin, 3 nM Ki8751 or 50 nM CBO-P11 for 12 h. After the treatment, cellular proliferation was measured by WST-8 assay. Data are
exposed as means7SEM for each group (n¼6). (B) Effect of siRNA against VEGF-A on cell proliferation. SiRNA of VEGF-Awas transfected into ARPE-19 cells and the cells were
incubated with HQþAGEs for 12 h. Cellular proliferation was measured byWST-8 assay. Data are expressed as means7SEM for each group (n¼5). (C) Effect of siRNA against
RAGE on HQþAGE-induced ARP19 cell proliferation. SiRNA of RAGE was transfected into ARPE-19 cells and the cells were incubated with HQþAGEs for 12 h. Cellular
proliferation was measured by WST-8 assay. Data are exposed as means7SEM for each group (n¼5).
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promoter plasmids were transfected into the cells. After 12 h from
transfection, the medium of each well was replaced with fresh
medium containing HQ and/or AGEs and incubated for another
12 h. After the treatment, cells were washed with 1 ml of phos-
phate buffered saline, and cell extracts were prepared in extraction
buffer (Life Technologies: 0.1 M potassium phosphate, pH 8.8/0.2%
Triton X-100). To monitor transfection efficiency, pCMV-SPORT-
βgal plasmid (Life Technologies) was co-transfected in all experi-
ments at a 1:10 dilution. Luciferase activity was measured using a
PicaGene Luciferase assay system (Toyo-ink, Tokyo, Japan) and was
normalized by the β-galactosidase activity as described [28,29,33–
36].

2.8. RNA interference

RNA interference against human SP1 was performed using
Silencer

s

Select predesigned small interfering RNAs (siRNAs)
(Ambion

s

, Life Technologies). The sense sequence of siRNA for
human SP1 was 5ʹ-GCAACAUGGGAAUUAUGAAtt-3ʹ. SiRNAs direc-
ted against human VEGF-A and RAGE were synthesized by NGRL.
The sense sequence of siRNA for human VEGF-A and RAGE
were 5ʹ-GGAGUACCCUGAUGAGAUCtt-3ʹ and 5ʹ-AUCUACAAUUU-
CUGGCUUCtt-3ʹ. The Silencer

s

Select human scrambled siRNA was
purchased from Ambion

s

and used as a control. Transfection of
siRNAs to ARPE-19 cells was carried out using Lipofectamine

s

RNAiMAX Reagent (Life Technologies) as described [22,36]. Cells
were transfected with 5 pmol/24-well culture dish (1.5�
105 cells/mL) for real-time RT-PCR and 1 pmol/96-well culture dish
(0.5�104 cells/100 mL) for WST-8 assay.

2.9. Date analysis

Results are expressed as mean7SEM. Statistical significance
was determined by Student's t-test using Graph Pad Prism
(GraphPad Software, La Jolla, CA).
3. Results

3.1. AGE partially prevented the loss of HQ-treated cell numbers by
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Fig. 4. Localization of essential region for VEGF-A transcription. The promoter activity on deleted promoter of human VEGF-A gene was shown. A series of luciferase
constructs containing promoter fragments with various 5ʹ-ends were transfected into (A) ARPE-19 and (B) h1RPE7 cells. The promoter activity was normalized and expressed
relative to the activity of co-transfected β-galactosidase plasmid and was expressed relative to the activity of promoterless pGL4.17[luc2/neo]. Values are means7SEM for
each group (n¼3–4). Possible binding sites for SP1 in the promoter region were black labeled in left panel.
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increases of replicative DNA synthesis

To evaluate direct effects of AGE and/or HQ on RPE cell pro-
liferation/cell death, ARPE-19 and h1RPE7 cells were exposed to
AGE, HQ, or HQþAGE for 24 h. After the treatment, the viable cell
numbers were determined by WST-8 assay. As shown in Fig. 1A
and B, the viable cell numbers of both ARPE-19 and h1RPE7 were
markedly reduced by HQ treatment (Po0.0001). The addition of
AGE did not show changes of viable cell numbers both in ARPE-19
and h1RPE7 cells (No addition vs AGE, P¼0.3611 in ARPE19, and
P¼0.6452 in h1RPE7). On the other hand, the combined addition
of HQ and AGE showed increased cell numbers against the addi-
tion of HQ alone (Po0.0001 in ARPE-19 and P¼0.0018 in hRPE7).

To determine whether HQ increases apoptosis, we measured
apoptosis of ARPE-19 cells by TUNEL method. As shown in Fig. 1C,
HQ significantly increased apoptosis (P¼0.0002). AGE alone did
not change apoptosis and the addition of HQþAGE did not prevent
the HQ-induced apoptosis, suggesting that AGE stimulates pro-
liferation of HQ-treated RPE cells.

We then measured replicative DNA synthesis of ARPE-19 cells
by IdU incorporation. As shown in Fig. 1D, replicative DNA
synthesis was increased by the addition of AGE in HQ-treated cells
(No addition vs HQþAGE, P¼0.0013; HQ vs HQþAGE, P¼0.0001),
indicating that AGE increases cell number by activating replicative
DNA synthesis in HQ-treated cells.

3.2. HQþAGE increased VEGF-A mRNA and secreted VEGF in the
medium

VEGF-A has been shown to be an important regulator of



Fig. 5. Effects of site-directed mutations on VEGF-A promoter activity. (A) Three site-directed mutations from �102 to �83, VEGF M1–3 are indicated. VEGF M1 and M3
markedly decreased the promoter activity induced by HQþAGEs. (B) Two site-directed mutations from �78 to �59, VEGF M4 and M5 are indicated. VEGF M4 markedly
decreased the promoter activity. (C) Two site-directed mutations from �64 to �45, VEGF M6 and M7 are indicated. VEGF M6 markedly decreased the promoter activity. GC
box sequences, which are possible binding sites for SP1 in the VEGF-A promoter, were shown by bold, and the mutation sites were underlined. Values are means7SEM for
each group (n¼3).

Fig. 6. Effect of SP1 knockdown on VEGF-A mRNA expression in ARPE-19 cells. After siRNA introduction, ARPE-19 cells were exposed with HQþAGE. The mRNA levels of (A)
SP1 and (B) VEGF-A were measured by real-time RT-PCR. Data are expressed as means7SEM for each group (n¼4).
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pathological angiogenesis and RPE proliferation [37]. We analyzed
the mRNA levels of VEGF-A by real-time RT-PCR and found that the
level of VEGF-A mRNA was increased by HQ treatment (Po0.0001
vs no addition) and the addition of HQþAGE resulted in a further
increment of VEGF-A mRNA (P¼0.0025 vs HQ) (Fig. 2A). We next
measured the concentration of VEGF-A in the ARPE-19 cell culture
medium by ELISA and found that the concentration of VEGF-A was
significantly increased by the treatment of HQþAGE (P¼0.0064 vs
no addition, P¼0.0433 vs HQ, P¼0.0063 vs AGE) (Fig. 2B).

3.3. Inhibition of the VEGF-A signaling decreased the cell proliferation

In order to know the mechanism of HQþAGE-stimulated RPE
cell proliferation, we first tested effects of VEGF/VEGF receptor
inhibitors such as sulochrin, Ki8751, and CBO-P11 on HQþAGE-
induced cell proliferation. As shown in Fig. 3A, the WST-8 cleavage
of ARPE-19 cells treated with HQþAGE was significantly reduced
by sulochrin, Ki8751, and CBO-P11 (Fig. 3A). RNA interference of
VEGF-A also inhibited the HQþAGE-induced cell proliferation
(Fig. 3B) (P¼0.0422). These results indicated that HQþAGE-
induced RPE cell proliferation was mediated by VEGF-A
expression.

Formation of AGEs leads to activation of variable signaling
pathways, initiating by a series of cell surface receptors. The most
studied AGE-receptor is the multi-ligand receptor for AGE, RAGE
[38]. Several other AGE-receptors were also identified as AGE-re-
ceptor complex (AGE-R1/OST-48, AGE-R2/80K-H, AGE-R3/galectin-
3) [39,40] and some members of the scavenger receptor (SR) fa-
mily (SR-A [41]; SR-B: CD36 [42,43]; SR-BI [44]; SR-E: LOX-1 [45];
FEEL-1; FEEL-2 [46]). In order to identify which AGE-receptor was
used in the HQþAGE-stimulated RPE cell proliferation, we in-
troduced siRNA against RAGE into ARPE-19 cells and treated cells
with HQþAGE, and found that the viable cell numbers of siRAGE-
introduced cells were significantly decreased than those of control
cells (Fig. 3C), indicating that AGE signal is mediated mainly by
RAGE in HQ-treated RPE cells.

3.4. Localization of the VEGF-A promoter region

To identify the region necessary for the induction of the VEGF-A
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gene in the HQþAGE-treated RPE cells, a 2353 bp fragment con-
taining 2303 bp of the promoter region of the human VEGF-A was
fused to the luciferase gene. Progressive deletions of the VEGF-A
promoter gene were performed and the deleted constructs were
transfected into ARPE-19 and hRPE7 cells. As shown in Fig. 4, the
deletion down to position �102 did not alter significantly the
expression of the reporter gene, but an additional deletion to
nucleotide �78 caused a remarkable decrease of promoter activ-
ity. Furthermore, deletions to nucleotide �64 and to nucleotide
�43 caused further decreases of promoter activity, indicating that
the regions from �102 to �78, �78 to �64 and �64 to �43
contain essential cis-elements for the VEGF-A promoter activities.
A computer-aided search for sequences similar to known cis-act-
ing element revealed that each region has a GC box sequence that
is possible binding sites for SP1.

3.5. SP1 is a key factor for VEGF-A transcription

To map out the cis-element of VEGF promoter that is re-
sponsible for VEGF transcription, site-directed mutagenesis of the
possible transcription factor binding sites was conducted within
the luciferase construct of “�102”, “�78”, and “�64”. VEGF
M1�7, which were introduced mutations in the SP1 binding motif
(s) and its nearby sequence, were constructed and introduced
them into ARPE-19 cells (Fig. 5). VEGF M1 and M3 showed sig-
nificant reductions in promoter activities (Po0.0001), while VEGF
M2 showed almost the same promoter activity as that of �102
wild-type (WT) construct. VEGF M4 showed significant reductions
in promoter activities (Po0.0001), while VEGF M5 showed almost
the same promoter activity as that of –78 WT. Moreover, VEGF M6
showed significant reductions in promoter activities (Po0.0001),
while VEGF M7 showed almost the same promoter activity as that
of �64 WT. These results strongly suggest that SP1 binding to the
GC box sequences is very important for VEGF-A transcription in
RPE cells.

To investigate significance of SP1 transcription factor for VEGF-
A expression in RPE cells, we used RNA interference of SP1 to
identify whether SP1 is essential for the transcription of VEGF-A
gene. As shown in Fig. 6, the introduction of SP1 siRNA into the
ARPE-19 cells reduced not only SP1mRNA itself but also HQþAGE-
induced VEGF-A mRNA (P¼0.0433). These results provided evi-
dence that SP1 bounds to the GC boxes in the VEGF-A promoter to
up-regulate VEGF-A transcription in RPE cells in response to
HQþAGE treatment.
4. Discussion

AMD is a progressive disease and one of the great causes of
severe vision loss in the elderly patients. AMD has also been re-
cognized as a multifactorial disease, for example, cigarette smok-
ing [47,48], diabetes mellitus [6], obesity [49], and hypertension
[50,51] have been reported as risk factors of AMD pathogenesis
and progression. This disease has been also traditionally classified
into early and late stages with its dry and wet forms. The dry form
AMD was defined as progressive destruction of retinal pigment
epithelial cells. While, wet form AMD is characterized by choroidal
neovascularization, which is led by some angiogenic cytokines
such as VEGF. Despite of intensive researches, what determine
AMD subtypes (dry or wet type) has been obscured.

In the present study, we found that the viable RPE cell numbers
were markedly reduced by HQ treatment, and the combined ad-
dition of HQþAGE increased cell numbers against HQ-treated
cells. TUNEL assay demonstrated that HQ increased apoptosis of
RPE cells. On the other hand, replicative DNA synthesis was sti-
mulated by the addition of AGE in HQ-treated RPE cells. Real-time
RT-PCR revealed that the level of VEGF mRNAwas increased by HQ
treatment and the addition of HQþAGE resulted in a further in-
crement of VEGF-A mRNA. ELISA certified that the VEGF secretion
from RPE cells to the culture medium was increased by the addi-
tion of HQþAGE. As VEGF has already demonstrated to proliferate
RPE cells and cause the choroidal neovasculization [52,53], it is
quite possible that RPE cell proliferation and choroidal vessel in-
duction are caused by HQþAGE-induced VEGF expression from
HQ-damaged RPE cells (Figs. 2 and 3). As how AGE upregulates
VEGF expression in RPE cells was unclear, we performed in-
troduction of siRAGE into RPE cells and found siRAGE significantly
inhibited the proliferation of HQþAGE-treated RPE cells, indicat-
ing an essential role of the AGE-RAGE pathway in VEGF induction
in HQþAGE-treated RPE cells. Although regulation of VEGF-A gene
expression was analyzed in a wide variety of cells [54,55], the
transcriptional control of VEGF-A gene in RPE cells has been un-
clear. Thus, we analyzed VEGF-A promoter and revealed that three
SP1 binding sites in 102 to �64 of the VEGF-A promoter was es-
sential for VEGF-A transcription in PRE cells via SP1 binding to the
3 GC boxes.

SP1 is known as a transcription factor that binds to GC box
sequence for transcriptional activation [56]. Previous studies
supported the idea that SP1 plays a role not only in housekeeping
type gene expression but also in inducible expression of various
genes, such as phorbol ester-induced superoxide dismutase in
endothelial cells [57], glucose-activated acetyl-CoA carboxylase
promoter in preadipocytes [58], glucose-activated plasminogen
activator inhibitor-1 promoter in vascular smooth muscle cells
[59], and tumor necrosis factor α-induced VEGF promoter in
glioma cells [60]. In this study, we revealed that SP1 is the es-
sential for the VEGF-A gene transcription in RPE cells. Deletion
analysis of VEGF-A promoter demonstrated that the deletion from
�102 to �78, �78 to �64 and �64 to �43 affected on the
transcriptional activity of VEGF-A not only in control cells but also
in HQþAGE treated cells. On the other hand, RNA interference of
SP1 significantly decreased VEGF-A gene expression in the
HQþAGE treated cells but not in untreated cells (Fig. 6). These
results may suggest that the molecular mechanism for up-reg-
ulation of VEGF-A gene is different between the control cells and
the HQþAGE treated cells.

Based on the present study, we would like to propose a possible
model of pathogenesis of dry- and wet-type AMD: Increases of HQ,
which are frequently caused by cigarette smoking, induces apop-
tosis of RPE cells to lead patients dry-type AMD. In addition to HQ
(cigarette smoking), increases of AGE, which are frequently caused
by aging and/or diabetes, induce VEGF-A expression in RPE cells.
VEGF-A acts not only as an autocrine growth factor to proliferate
RPE cells but also as a paracrine growth factor to proliferate nearby
vascular cells, resulting pathological neovascularization to lead
patients wet-type AMD.
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