Individuals’ half-lives for 2,3,4,7,8-penta-chlorodibenzofuran (PeCDF) in blood: correlation with clinical manifestations and laboratory results in subjects with Yusho

Shinya Matsumoto, Manabu Akahane, Yoshiyuki Kanagawa, Junboku Kajiwara, Takashi Todaka, Fumiko Yasukawa, Hiroshi Uchi, Masutaka Furue, and Tomoaki Imamura

1Division of Social Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
2Department of Public Health, Health Management and Policy, Nara Medical University School of Medicine, Kashihara, Japan
3Fukuoka Institute of Health and Environmental Sciences, Fukuoka, Japan
4Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Email addresses:
SM: shinyamatsumoto-tky@umin.ac.jp
MA: makahane@nared-med-u.ac.jp
YK: kanagawa-ty@umin.ac.jp
JK: kajiwara@fihes.pref.fukuoka.jp
TT: todaka@fihes.pref.fukuoka.jp
FY: yasukaf@med.kyushu-u.ac.jp
HU: uchihir@dermatol.med.kyushu-u.ac.jp
MF: furue@dermatol.med.kyushu-u.ac.jp
TI: imamura-t@umin.ac.jp

*Corresponding author

Division of Social Medicine, Graduate School of Medicine, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
Phone: +81-3-5800-8716; Fax: +81-3-5800-8765
E-mail: shinyamatsumoto-ty@umin.ac.jp
Bullet Points (these sentences will remove for submission)

Correlations between half-life of 2,3,4,7,8-PeCDF and symptoms were evaluated.

Symptoms that accelerate excretion of lipids may lead to a shorter half-life.

Red blood cells are related to the half-life of 2,3,4,7,8-PeCDF.

Further studies are required to investigate the excretory mechanism of 2,3,4,7,8-PeCDF.

Abstract

Background

In 1968, many people developed dioxin poisoning (Yusho) in Japan. Ingestion of 2,3,4,7,8-pentachlorodibenzofuran (2,3,4,7,8-PeCDF) was considered to be the cause of this poisoning. Although some patients had high concentrations of 2,3,4,7,8-PeCDF in their blood, individuals' half-lives of 2,3,4,7,8-PeCDF were long.

Objectives

To evaluate the relationship between clinical and laboratory parameters and the individual half-life of 2,3,4,7,8-PeCDF in blood.

Methods

Clinical and laboratory data were collected during annual check-ups from 2001 to 2008. We enrolled 71 patients, who were measured more than 3 times, and who had 2,3,4,7,8-PeCDF concentrations in blood >50 pg g⁻¹ lipid. The half-life of 2,3,4,7,8-PeCDF for each patient was estimated using linear regression. Moreover,
relationships between clinical and laboratory parameters and individual half-life were investigated by linear regression.

Results

A shortened individual half-life for 2,3,4,7,8-PeCDF was significantly correlated with an increased red blood cell count, increased viscous secretions from the meibomian glands, existing black comedones, and severe cedar pollen allergy.

Conclusions

Symptoms that accelerate excretion of lipids from the body, such as viscous secretions from the meibomian glands, may lead to a shorter half-life of 2,3,4,7,8-PeCDF. Red blood cells are related to the half-life of 2,3,4,7,8-PeCDF. However, further studies are required to investigate the excretory mechanism of 2,3,4,7,8-PeCDF.

Keywords

Dibenzofuran, cedar pollen allergy, Yusho, half-life, red blood cell, 2,3,4,7,8-pentachlorodibenzofuran
1. Introduction

In 1968, an unknown disease was diagnosed in patients in Western Japan who had presented with several devastating symptoms. This disease was named "Yusho". These patients had ingested rice-bran oil contaminated with extremely high concentrations of various polychlorinated biphenyls and dioxin-like compounds (Furue et al. 2005; Yoshimura 2003). At the time, poisoning due to polychlorinated biphenyls was thought to be the cause of Yusho. However, subsequent chemical analyses and medical investigations revealed that the dioxin-like compound 2,3,4,7,8-pentachlorodibenzofuran (2,3,4,7,8-PeCDF) was the main causative agent (Furue et al. 2005; Iida et al. 2003; Imamura et al. 1977; Toyoda et al. 1999: Yoshimura 2003). Since 2001, medical examinations have been conducted annually in subjects with Yusho to measure the concentrations of dioxin-like compounds (Kanagawa and Imamura 2005; Todaka et al. 2003). Such dioxin-like compound measurements are used to estimate the half-lives of 2,3,4,7,8-PeCDF in individual patients. In recent years, our research team has published several articles on the association between health outcomes and PCDF exposure, using a wealth of data and inter alia data-mining methods. Also, kinetic calculations have been published earlier using the binary logarithmic value of each dioxin concentration as a dependent variable and the
year of measurement as the independent variable. The linear coefficient obtained from this linear regression analysis was the negative reciprocal number of the half-life. We previously estimated individuals’ half-lives of 2,3,4,7,8-PeCDF in >100 patients with Yusho and observed that the half-life varied among patients and that there were two peaks. At first sight, the bimodal distribution was unexpected on physiological grounds (Matsumoto et al. 2009). In some of these patients, the concentrations were high and the half-lives appeared to be infinite. Ongoing ingestion of large amounts of 2,3,4,7,8-PeCDF is unlikely because of recent restrictions on dioxins and dioxin-like compounds. The distribution of the reciprocals of half-lives is similar to a normal distribution. It was considered that these deviations were caused by a randomness that obeyed a normal distribution. These deviations were considered to be due to measurement errors and changes in body weight in adulthood, which obeyed a normal distribution. The mode of the distribution of the reciprocal of half-lives indicated an infinite half-life. It was thought that this infinite half-life was the result of removing the randomness. Hence, this infinite half-life was not the apparent half-life shown by Shirai and Kissel (Shirai and Kissel 1996). A clear conceptual distinction between apparent and true half-lives is required to reduce the uncertainty in the elimination half-lives of persistent chemicals (Milbrath et al. 2009, Ritter et al. 2011). However, the infinite half-life reported previously is close to the true half-life, because these half-lives were estimated for patients with high concentrations. This discrepancy of “the true half-life is less than 10–15 years”, as stated by Ritter et al. (Ritter et al. 2011). It is considered that the term “true half-life” has two meanings: one is the “true half-life” for each individual, and the other is a representative value of the “true half-lives” of a group. Ritter et al. used “true half-life” as a representative value of true
half-lives. To investigate the half-life and underlying mechanisms, a physiologically
based pharmacokinetic (PBPK) model was used. Kreuzer et al. described the lifetime
body burden of 2,3,7,8-tetrachlorodibenzo-p-dioxin (Kreutzer et al. 1997). Milbrath et al.
presented another model. However, these models could not show a bimodal
distribution. A model involving discrete parameters to show the bimodal distribution
is needed.
In early studies of half-lives of dioxins, the status of patients was disregarded, and
individuals’ apparent half-lives were determined to calculate the representative value
(Masuda et al. 1995). Flesch-Janys et al. determined individuals’ half-lives to examine
the relationship between the individual half-life and patient status (Flesch-Janys et al.
1996). Ritter et al. determined the representative value of true half-lives from
measurements in healthy individuals by assuming that true half-lives did not vary
between individuals (Ritter et al. 2011). However, there are no reports on whether
individuals’ true half-lives are equal among individuals.
We aimed to evaluate the relationship between the individual true half-life of
2,3,4,7,8-PeCDF in blood and the status of individuals with Yusho. Items strongly
correlated with half-lives are good candidates to enhance the PBPK model.

2. Methods

2.1. Subjects

Of 267 patients whose 2,3,4,7,8-PeCDF concentrations in blood were measured four
times or more between 2001 and 2008, we selected 72 patients whose concentrations
of 2,3,4,7,8-PeCDF in blood were >50 pg g⁻¹ lipid. Blood concentrations of 2,3,4,7,8-
PeCDF were 52.9–1230.3 pg g⁻¹ lipid (mean ± SD, 283.4 ± 226.9 pg g⁻¹ lipid). Table
shows the sex and age distributions among the selected patients. Normal blood concentrations of 2,3,4,7,8-PeCDF in the general population are 3.5–41.7 pg g\(^{-1}\) lipid (15.2 ± 8.9 pg g\(^{-1}\) lipid). For healthy individuals, current concentrations were caused by ongoing exposure. For individuals with high concentrations in Yusho, the effects of ongoing exposure were small. Therefore, subjects with mean blood concentrations of 2,3,4,7,8-PeCDF >50 pg g\(^{-1}\) lipid were included. We initially recorded the age and sex of patients. Using a general medical questionnaire, we then recorded body weight, body mass index (BMI), changes in BMI, consumption of alcohol and tobacco, nutritional state, and the prevalence of headache, general fatigue, arthralgia, diarrhea, and cough. Dermatological manifestations (history of acneform eruptions, black comedones, pigmentation and recent recurrence of cystic lesions) and ophthalmological manifestations (abnormal discharge from the eyes and viscous secretions from meibomian glands) were also documented. Laboratory examinations included counts of white blood cells (WBCs), red blood cells (RBCs), platelets, neutrophils, and basophils, cedar pollen allergy class based on IgE radioallergosorbent (RAST) scores, and the bone mineral density (BMD) test. BMD test results are expressed as the percentage of the young adult mean level (Wu et al. 2004). Each clinical and laboratory parameter value for each patient was calculated as the mean if multiple values were available for each patient. Changes in the amount of body fat affect the half-life of 2,3,4,7,8-PeCDF (Milbrath et al. 2009). Therefore, changes in weight and BMI were calculated for each patient using linear regression analysis.
2.2. Statistical Methods

First, the rate of change in concentration for each patient was estimated by univariate linear regression. The binary logarithm of 2,3,4,7,8-PeCDF concentrations was the dependent variable, and measurement years were independent variables.

\[\log_2 C_{ij} = a_i \cdot t_{ij} + b_i \]

Eq. 1

The rate of change in concentration is a negative reciprocal of half-life (years). It was considered that measurement errors were distributed as normal distribution. Linear regression was calculated based on the assumption that residuals of dependent variables were distributed as normal distribution. The estimated coefficient was distributed as normal distribution because of the principle of linear regression. We used the rates of change in concentration instead of half-lives. In the final step, half-life was calculated from the rate of change in concentration and evaluated.

The relationship between the rate of change in concentration and clinical and laboratory parameters was then investigated by comparing t-values of univariate linear regressions, which were determined by the rate of change in concentration as the dependent variable, and each clinical and laboratory parameter were independent variables.

We estimated an equation which estimates the rate of change in concentration using clinical and laboratory parameters. This method started involving clinical and laboratory parameters of which p values were less than 0.15 in previous evaluations of relationships between the rate of change in concentration and clinical and laboratory parameters. The backward stepwise method initially involved all listed variables. One variable was then removed, which had the highest p value in each step. These steps
were repeated until p values of all variables were < 0.05. The stepwise method can
estimate the most suitable equation.

Some researchers have reported that half-life is related to age and sex (Flesch-Janys et
al. 1995, Milbrath 2009). We estimated an equation to estimate rates of change by sex
and age.

3. Results

3.1. Half-lives for all patients

Half-lives for all patients were estimated more than or equal to four times for each
patient from their 2,3,4,7,8-PeCDF concentrations. Figure 1 shows the distributions of
the half-lives of 2,3,4,7,8-PeCDF in patients. As we reported previously (Matsumoto
et al. 2009), there were two peaks, one was infinite and the other was approximately
10 years.

One patient was an outlier among the 72 patients. This patient’s data were removed,
and 71 patients were included for analysis.

3.2. Relationships between half-lives and individual clinical manifestations

Table 2 shows clinical and laboratory parameters, which had p values less than 0.15.
Usually, 0.05 is the criterion for p values. The equation that is represented by multiple
parameters shows higher p values if the equation has fewer parameters than an
appropriate number of parameters, i.e., the variables were evaluated as worse p values.

There were four items that had a p value less than 0.05. Increased red blood cell count
was the most strongly related to shorter half-lives of 2,3,4,7,8-PeCDF, followed by
increased black comedones. Positive results for viscous secretions from the
meibomian glands and cedar pollen allergy were related to a shorter half-life of 2,3,4,7,8-PeCDF. Items that had p values between 0.05 and 0.15 were BMD, sex, smoking status, general fatigue, and past pigmentation.

Standard RBC counts for both sex and age, as reported by Ota (2008), were substituted for RBCs in an equation (Table 2), which estimates rates of change. This resulted in the following half-life values for 2,3,4,7,8-PeCDF: 13.89 years in men aged 30–39 years (RBC count, 4,995,000 cells mm\(^{-3}\)); 25.26 years in women aged 30–39 years (4,290,000 cells mm\(^{-3}\)); 25.11 years in men aged 80–89 years (4,295,000 cells mm\(^{-3}\)); and 32.90 years in women aged 80–89 years (4,090,000 cells mm\(^{-3}\)).

3.3. Most suitable equation for estimating the true half-life of 2,3,4,7,8-PeCDF

The most suitable equation for estimating the rate of change in concentration was Eq. 2 (Table 3). This equation was obtained by selecting variables using the backward stepwise method with the criterion of 5%, starting with all items with p values less than 0.15. Similar clinical/laboratory items were removed using the stepwise method, and dissimilar items were used to create an equation for estimating the rate of change in concentration.

\[
\text{Rate of change in concentration} = -0.089861 - 0.038591 \times \text{Black comedones} - 0.018018 \times \text{Cedar pollen allergy} + 0.023333 \times \text{General fatigue} + 0.041891 \times \text{Past pigmentation}
\]

We found that a higher severity of black comedones and higher cedar pollen allergy levels led to a shorter individual half-life of 2,3,4,7,8-PeCDF in patients. Higher
general fatigue and higher past pigmentation were correlated with a longer individual
half-life.

3.4. Equation for estimating the half-life of 2,3,4,7,8-PeCDF according to sex and
age
We created an equation to estimate the individual true half-life of 2,3,4,7,8-PeCDF on
the basis of sex and age.

\[
\text{Rate of change in concentration} = -0.1726165 + 0.0011512 \times \text{Age} + 0.0302986 \times \text{Sex}
\]

Eq. 3

There was not a strong relationship between half-life and sex and age (p>0.05). Figure
2 shows the half-lives which were calculated by Eq.3 (Table 4) for ages between 30
years and 80 years. This age range was wider than the range that Eq. 3 was estimated.

Interpretation of the results for both ends of the age range is needed. The half-life
values for 2,3,4,7,8-PeCDF calculated using Eq. 3 were longer in women than those
in men, and generally increased with age.

4. Discussion

Several accidental instances of dioxin intoxication, such as Yusho in Japan, Yu-
Cheng in Taiwan, and the Seveso disaster in Italy, have been reported (Bertazzi et al.
1998; Hsu et al. 1985). Dioxin-like compounds are lipophilic substances that are not
readily excreted by the human body. Kerger et al. (Kerger et al. 2006) surveyed
children involved in the Seveso disaster and reported that the half-lives of dioxins and
dioxin-like compounds are dependent upon patient age and dioxin concentrations.

Among patients with PeCDF blood levels of ≥50 pg g⁻¹, there were two groups: one
showing a half-life of approximately 7 years and the other showing no reduction in
PeCDF levels over time. These results suggest that there is a group of patients whose
PeCDF levels are maintained at a high level. Our previous study suggested that a
more complicated model is required to explain PeCDF excretion in humans
(Matsumoto et al. 2009). We studied, by association analysis, combinations of
symptoms which were strongly associated with high concentrations of PeCDF
(Imamura et al. 2007). Principal component analyses have revealed that the
concentrations of PeCDF is strongly associated with the concentrations of PCB and
polychlorinated quarter phenyl (PCQ). It is also associated with levels of blood
glucose, arthralgia, total cholesterol, urinary sugar, 2-h erythrocyte sedimentation rate,
thymol, and sodium, as well as conventionally dermatological symptoms such as
acneiform eruptions and black comedones (Kanagawa et al. 2008). In one of our
previous studies, the incidence and severity of most of the dermatological and
ophthalmological symptoms decreased from 1988 to 2001–2003 (Matsumoto et al.
2010).

Leung et al. (Leung et al. 2007) reached a similar conclusion after estimating dioxin-
like compounds half-lives in five subjects with Yusho and three with Yu-Cheng. Half-
life values of 1.1 years in patients with high concentrations of dioxin-like compounds
in blood and 7.2 years in patients with low concentrations of dioxin-like compounds
in blood were determined. Other estimates of dioxin-like compound half-lives include
8.9 years by Masuda et al. (Masuda et al. 1995), 9.6 years by Ryan et al. (Ryan et al.
1993), and 9.1 years by Iida et al. (Iida et al. 1995). Even though half-life values of
<10 years have been reported (Ritter et al. 2011), we previously observed that some
subjects with Yusho showed considerably longer 2,3,4,7,8-PeCDF half-life values
than expected (Matsumoto et al. 2009).
The four clinical/laboratory items examined in the present study showed a strong correlation with a short half-life for 2,3,4,7,8-PeCDF (Table 2). "Increased viscous secretions from the meibomian glands" and "increased severity of black comedones", which are symptoms specific to Yusho, were correlated with a shorter half-life for 2,3,4,7,8-PeCDF. These symptoms cause lipid excretion from the body. Such excretion of lipids in combination with 2,3,4,7,8-PeCDF may explain the shorter half-life.

Some researchers have reported that the half-life of dioxins is related to sex and age (Kerger et al. 2006; Leung et al. 2005; Milbraith et al. 2009). We estimated an equation, which estimates the rate of change in concentration with age and sex (Eq. 3). However, we found that the half-life of 2,3,4,7,8-PeCDF was not strongly related to sex and age (p value for age was >0.2). The estimated half-lives with sex and age in our study are similar to results of Flesch-Janys et al. (Flesch-Janys et al. 1996). It is possible that a large variation in the characteristics of subjects might cause large p values for these relationships.

The present study identified previously unreported clinical/laboratory items related to the half-life of 2,3,4,7,8-PeCDF. A higher RBC count was correlated with a shorter half-life for 2,3,4,7,8-PeCDF. In subjects with severe Yusho, anemia developed in the stage of early exposure (Furue et al. 2005). Dioxin binds to RBCs and induces their lysis (Bukowska 2004). There are big differences in concentration between Yusho patients and those in the study of Bukowska, and in vivo and in vitro. Taking into account the high turnover rate of RBCs, the scavenger function of RBCs against blood dioxin may be an important excretory pathway, particularly during the chronic phase of intoxication. The number of RBCs is also associated with differences in age and
sex (Ota 2008). Metabolism and genetic differences resulting in different capacities,
excretion differences related to nutrition, and change in body weight could explain
these observations. A more biophysiological approach is warranted when mechanisms
are speculated upon; for example, looking as well at the number of erythrocytes and
reticulocytes might give further clues. Patients aged >70 years and women are anemic
compared with younger individuals and men. These confounding factors appear to
affect the excretion rate of 2,3,4,7,8-PeCDF. In the current study, the number of
RBCs was removed in the process of the stepwise method for estimating a suitable
equation. When RBCs were removed from the calculation, the t-value of black
comedones was improved. Therefore, RBCs might be related to dermatological
activity.
The current study found that the presence of cedar pollen allergy (high scores for the
radioallergosorbent test: RAST) was correlated with a shorter half-life for 2,3,4,7,8-
PeCDF. Once ingested, dioxins are thought to be excreted via the feces, urine, sebum,
and sputum (Furue et al. 2005; Weber et al. 1993). Diarrhea, severe seborrhea, and
excessive production of sputum are apparent acute and chronic features in subjects
with Yusho (Furue et al. 2005; Kanagawa et al. 2008). Cedar pollen allergy causes
seasonal rhinitis in patients, and such patients may develop severe rhinorrhea that may
aid in the excretion of 2,3,4,7,8-PeCDF. However, dioxin concentrations in rhinorrhea
patients have not been measured. In our study, the variable of viscous secretions from
the meibomian glands was removed in the process of backward stepwise. When this
item was removed, the t-value of cedar pollen allergy was improved. The severity of
cedar pollen allergy may be related to acceleration of various body fluids, such as
sputum, phlegm and eye mucus. Among Yusho patients, past pigmentations are
stronger for patients with high 2,3,4,7,8-PeCDF concentrations (Kanagawa et al. 2008). Past pigmentation (which is a non-discharge symptom without excretion of body fluids) is correlated with longer half-lives. Equation 2 included the variables of black comedones, cedar pollen allergy class, general fatigue, and past pigmentation. Equation 2 was determined using a stepwise method and most accurately estimates the individual half-life of 2,3,4,7,8-PeCDF. This equation yields a better estimation of the 2,3,4,7,8-PeCDF individual half-life than an equation that uses sex and age parameters, which have been previously reported to correlate with apparent half-life (Flesch-Janys 1996, Milbrath 2009). Shirai and Kissel (1996) showed that estimated half-lives based on observations are affected, not only by excretion, but also by ongoing exposure and physiological changes, such as changes in body weight. However, most of the half-lives reviewed by Shirai and Kissel (1996) were estimated from two measurements in each patient: the first and last measurements. Therefore, errors could not be evaluated at the time of measurement. Consequently, alterations could not be distinguished (i.e., they may be temporary or long-term changes or caused by measurement errors). Our study included patients who were measured at least four times. Therefore, effects of measurement errors and temporal changes were reduced by linear regression. Ongoing exposure affects apparent half-lives. The present study involved subjects with >50 pg g⁻¹ lipid, which is a higher concentration than that of healthy individuals. Therefore, ongoing exposure has fewer effects in such patients with high concentrations. Apparent half-lives are affected by continuous dilution by a gain in body weight during the growth phase (Clewell et al. 2004). In the present study, a gain or loss in body weight was determined for each patient, and we evaluated the
correlation with the rate of change in body weight and the rate of change in concentration of 2,3,4,7,8-PeCDF. We found that the rate of change in weight was not strongly correlated to the rate of change in concentration. It was considered a contingency that concentration would continuously decrease or increase when body weight gain or loss occurred throughout the measurement period. In adults, it is difficult to assume that long-term continuous gain or loss in body weight occurs. Therefore, continuous condensation and dilution due to changes in body weight are not considered as important factors. It has been reported that changes in body weight affect apparent half-lives, possibly reflecting temporary intra-individual variations.

There are no reports on long-term continuous condensation caused by physiological status (not changes in physiological status) in adults. Long-term continuous changes in concentration reflect an excretion pathway if 2,3,4,7,8-PeCDF is metabolized into a different compound. Long-term continuous changes in concentration are dependent upon excretion if there is neither ongoing exposure nor in-vivo synthesis. Some studies have reported that the representative true half-life of dioxins is shorter than 10 or 15 years (Ritter et al. 2011; Shirai and Kissel 1996). However, no study has found that the individual true half-life is limited. Ongoing exposure is negligible if the true half-life is 10–15 years for patients with high 2,3,4,7,8-PeCDF concentrations, as in the subjects in the present study. The present study showed that half-lives varied among individuals. For patients with high 2,3,4,7,8-PeCDF concentrations and long half-lives, ongoing exposure was not negligible. If patients have 25-fold high concentrations and 25-fold long true half-lives compared with those of the general public, they are in a steady-state (i.e., their apparent half-lives are infinite), similar to the general public. Apparent half-lives,
which are affected by a temporary change in body weight and measurement errors, have a normal distribution. In figure 2, females are distributed similar to normal distribution around infinite as described above.

Apparent half-lives have been reported to be correlated with physiological status and changes in physiological status (Milbrath et al. 2009). Some types of physiological status do not change in the long-term. Long-term continuous changes in concentration not related to ongoing exposure are caused by excretion, metabolism, and synthesis. It is possible that previously reported body status (not a change in body status) was correlated with apparent half-lives, but was also correlated with individual true half-lives.

5. Conclusions

In the present study, the relationship between symptoms and half-life of 2,3,4,7,8-PeCDF was evaluated in 71 Yusho patients with 2,3,4,7,8-PeCDF concentrations as high as 50 pg g-1 lipid. The shortened half-life (high excretion rate) of 2,3,4,7,8-PeCDF in subjects with Yusho was significantly correlated with increased RBC count, positive results for black comedones, positive results for viscous secretions from the meibomian glands, and increased cedar pollen allergy. Individuals' half-lives of 2,3,4,7,8-PeCDF varied with the patients' status. Notably, the individual half-life of 2,3,4,7,8-PeCDF was long in older women. Symptoms that lead to excretion of lipids outside of the body may lead to a shorter half-life of 2,3,4,7,8-PeCDF. Further studies are required to determine the role of RBCs in 2,3,4,7,8-PeCDF.
Competing interests

The authors declare that they have no competing interests.

Author contributions

SM designed the project, developed the analytical method, and drafted the manuscript.

MA interpreted the results of the BMD test. YK interpreted the results. JK examined the data quality for analyses. TT, FY, HU, and MF interpreted the results (particularly in relation to dermatology). TM directed and coordinated the project. All authors approved the final manuscript.

Acknowledgment

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Health, Labour and Welfare, Japan (Research on Food Safety, H21-014).

References

IGAKU NO AYUMI 1977:78-79.

Imamura T, Kanagawa Y, Matsumoto S, Tajima B, Uenotsuchi T, Shibata S, Furue M.

Relationship between clinical features and blood levels of

Figure legends

Figure 1. Distribution of half-life values

Half-life values for each patient were estimated using univariate linear regression for each patient.

Figure 2. Estimated half-life values on the basis of sex and age

Half-life values were estimated based on the sex and age of the patients.

Table legends

Table 1. Sex and age of the study subjects

Table 2. Estimation of the rate of change of 2,3,4,7,8-PeCDF on the basis of individual parameters and goodness-of-fit

Table 3. β coefficients and evaluation of best-fit estimation of the equation for the half-life of 2,3,4,7,8-PeCDF

Table 4. β coefficients and evaluation of estimation of the equation for the half-life of 2,3,4,7,8-PeCDF by sex and age
<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-50</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>50-60</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>60-70</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>70-80</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>80-90</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 1. Distribution of half-life values
Table 2. Estimation of the rate of change of 2,3,4,7,8-PeCDF on the basis of individual parameters and goodness-of-fit

<table>
<thead>
<tr>
<th>Items correlated with a high excretion rate (shortened PeCDF half-life)</th>
<th>F-value</th>
<th>Equation to estimate the rate of change (x indicates an item)</th>
<th>p value</th>
<th>R squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Increased red blood cell count</td>
<td>6.607</td>
<td>$0.1577034 - 0.0004599 \cdot x$</td>
<td>0.01232</td>
<td>0.08738</td>
</tr>
<tr>
<td>2 Black comedones</td>
<td>5.243</td>
<td>$-0.001301 - 0.026198 \cdot x$</td>
<td>0.02510</td>
<td>0.07061</td>
</tr>
<tr>
<td>3 Positive results for viscous secretions from the meibomian glands</td>
<td>4.701</td>
<td>$-0.006176 - 0.027205 \cdot x$</td>
<td>0.03359</td>
<td>0.06379</td>
</tr>
<tr>
<td>4 Cedar pollen allergy</td>
<td>4.421</td>
<td>$-0.036677 - 0.015482 \cdot x$</td>
<td>0.03914</td>
<td>0.06022</td>
</tr>
<tr>
<td>5 Increased bone mineral density</td>
<td>3.960</td>
<td>$0.0129792 - 0.0007208 \cdot x$</td>
<td>0.05056</td>
<td>0.05428</td>
</tr>
<tr>
<td>6 Male sex</td>
<td>2.791</td>
<td>$-0.08383 + 0.02491 \cdot x$</td>
<td>0.09931</td>
<td>0.03888</td>
</tr>
<tr>
<td>7 Smoking status</td>
<td>2.741</td>
<td>$-0.01588 - 0.02062 \cdot x$</td>
<td>0.10230</td>
<td>0.03821</td>
</tr>
<tr>
<td>8 General fatigue</td>
<td>2.500</td>
<td>$-0.05342 - 0.01971 \cdot x$</td>
<td>0.11840</td>
<td>0.03497</td>
</tr>
<tr>
<td>9 Past pigmentation</td>
<td>2.159</td>
<td>$-0.08726 + 0.02774 \cdot x$</td>
<td>0.14630</td>
<td>0.03034</td>
</tr>
</tbody>
</table>
Table 3. β coefficients and evaluation of best-fit estimation of the equation for the half-life of 2,3,4,7,8-PeCDF (R squared = 0.2613)

<table>
<thead>
<tr>
<th></th>
<th>β coefficient</th>
<th>t-value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant value</td>
<td>-0.089861</td>
<td>-2.621</td>
<td>0.01086</td>
</tr>
<tr>
<td>Black comedones</td>
<td>-0.038591</td>
<td>-3.439</td>
<td>0.00102</td>
</tr>
<tr>
<td>Cedar pollen allergy</td>
<td>-0.018018</td>
<td>-2.643</td>
<td>0.01025</td>
</tr>
<tr>
<td>General fatigue</td>
<td>0.023333</td>
<td>2.027</td>
<td>0.04667</td>
</tr>
<tr>
<td>Past pigmentation</td>
<td>0.041891</td>
<td>2.279</td>
<td>0.02590</td>
</tr>
</tbody>
</table>
Table 4. β coefficients and evaluation of estimation of the equation for the half-life of 2,3,4,7,8-PeCDF by sex and age (R squared = 0.06121)

<table>
<thead>
<tr>
<th></th>
<th>β coefficient</th>
<th>t-value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.1726165</td>
<td>-2.323</td>
<td>0.0232</td>
</tr>
<tr>
<td>Age</td>
<td>0.0011512</td>
<td>1.272</td>
<td>0.2078</td>
</tr>
<tr>
<td>Sex</td>
<td>0.0302986</td>
<td>1.963</td>
<td>0.0538</td>
</tr>
</tbody>
</table>