
MULTIPLE ROLES OF HMGBl IN CANCER CELLS 

YI LUO， HIROKI KUNIYASU 
Depar伽 ent01 Molecular Pathology， Nara Medical肋仰向ity

Received November 8， 2011 

(109) 

Abstract: HMGBl is a non-histone chromosomal protein， a secretory protein binding 

t加othe receptor for advanced g副ly戸7氾ca此tiわonend products in c伺an凹ceぽrcells and monocyt白e.か-li

immune cells. HMGBl enhances prolifeぽra批tio∞n民1，mo凶ti出l日ity，invasion， and survival of cancer 

cells. HMGBl associated with DNA repair of anti-cancer drug-induced DNA damage. 

Importantly， HMGBl is released from necrotic cancer cells and induces re-growth of the 

remnant cancer cells. In contrast， 1品I[GBlinduces apoptosis in monocyte【lineageimmune 

cells and inhibits tumor-infiltrating macrophages and dendritic cells， lymph node sinus 

macrophages， liver Kupffer cells to attenuate anti-cancer immune responses and anti-

metastatic organ defense. 
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町TRODUCTION

High motility group box (HMGB)-l is a mu1tifunctional protein possessing diverse 

biological activities in normal cells. The roles of HMGBl in cancer are also diverse and can 

be divided into 2 categories: its direct effect on cancer cells， and its effect on host immunity. 

HMGBl provides pro百tumoraland anti-immune effects in the cells expressing the receptor for 

advanced end glycation products (RAGE). Both cancer cells and monocyte】lineagecells 

express RAGE; however， the effect is completely different between the two cells. Essentially， 

HMGBl accelerates the metastasis of cancer cells. In this review article， we describe the roles 

of HMGBl in cancer and immunity， and anti-cancer drug and tumor re-growth after anti-

cancer treatment. The significant roles of HMGBl in cancer suggest that HMGBl is an 

excellent molecular target for cancer treatment， especially anti-metastatic therapeutics. These 

roles of HMGBl after all provide resistance to anti-cancer drugs. 

HMGBl 

The high mobility group box 1 (HMGBl) protein is one of several non-histone 

chromosomal proteins found in eukaryotic cells!.3). HMGBl is isolated as a cytosolic 30【kDa

protein from fetal brain tissue 5) and is associated with neurite outgrowth2， 3). As a nuclear 

protein， HMGBl binds to DNA， participating in multiple processes such as transcription， 

replication， recombination， DNA repair， and genomic stability6). 

In the cytoplasm， HMGBl is associated with cell motility as observed in the outgrowing 

neurites. At the leading edge of the motile cell， HMGBl accelerates formation of filopodia as 

well as actin-polymer formation2). The mechanism of HMGBl-dependent cell migration in 

cancer cells is considered to be similar to that of outgrowing neurites. HMGBl is expressed 

in immature cells and malignant cells at high levels and it plays a major role in controlling 

cell migration activity7). The DNA田bindingcapacity of HMGBl provides a role as a DNA 
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chaperon. In the innate immune system， HMGBl is the effective DNA sensor presenting the 

DNA to toll-like receptor (TLR)8). Recently， endogenous HMGBl is revealed to activate an 

autophagy signal， which promotes cell surviva19). 

HMGBl is secreted from activated monocytes， macrophages， and NK cells， and acts 

extracellularly as a proinf1ammatory cytokine. HMGBl expression and secretion is 

upregulated in response to stimulation of cells by proinflammatory cytokines， endotoxin， and 

oxidative stresses in macrophages10-13). Cancer cells also overexpress and secrete HMGBl by 

stimulation of growth factors， cytokines， and cellular stresses involving advanced glycation 

end products (AGE) and deoxycholic acid14-17l. Secreted HMGBl activates RAGE as a ligand 

to induce cell growth， motility， invasion， and angiogenesis as wi11 be described below. 

HMGBl receptor 

The HMGBl receptor， RAGE is purified from bovine lung endothelial extract as receptor 

of AGE18). RAGE is a member of cell surface receptors belonging to the immunoglobulin 

superfami1y19-22). RAGE is closely associated with cell growth， cell invasion through mitogen 

activated protein (MAP) kinase activation， and matrix metalloproteinase (MMP)凶2and -9 

expression in glioma cells22). RAGE upregulation is found in colon and oral carcinogenesis in 

rodents16.23). 

The co田expressionof HMGBl and RAGE is pivotal for accelerating tumor metastasis and 

poor prognosis in glioma， gastric， colorectal， and prostate cancer15. 22. 24-26). Gastric and colon 

cancer cells show concurrent expression of HMGBl and RAGE， which is closely associated 

with the autocrine/paracrine regulation of cell motility and invasion of cancer cells15.24-26). 

Metastatic prostate cancer cases show HMGBl induction in prostatic stromal cells. 

Concurrence of RAGE expression in tumor cells and HMGBl expression in stromal cells 

accelerate cancer metastability15). 

In contrast， high-level expressions of RAGE and HMGBl are found in normal lung tissue 

and non-small cell lung cancer， which， in contrast with other cancer， is associated with tissue 

differentiation and good prognosis27， 28). RAGE is also associated with myogenic 

differentiation of myoblasts and r・habdomyosarcoma，which is associated with reduction of 

malignant phenotypes of the disease29，.30). 

HMGBl secretion 

HMGBl is released by both active and passive processes. HMGBl is actively transported 

from the nucleus to the cytoplasm following detachment from loosened chromosomes by 

histone acetylation17l. And recent studies have shown that it shuttles between the nucleus to 

the cytoplasm through hyperacetylation and phosphorylation in macrophages， and is 

monomethylated at Lys42 in neutrophi1s. HMGBl is released from necrotic cells by passive 

diffusion31). However， HMGBl is not released from tightly packed nuclei of apoptotic cells 

and triggers inf1ammation .. 

HMGBl intracellular signals 

The interaction of HMGBl with RAGE also activates the intracellular signaling pathway 

of MAP kinase. Consequently， RAGE activates GTPases， Ras， Cdc42， Rac， Rho， and MMP-2/-9 
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3，221 RAGE expression is associated with cell invasion24，筋1and it is suggested that type IV 

collagenase activation may be one mechanism for enhanc巴mentof the invasive capacity of 

cancer cells， RAGE activation induces cell growth through MAP kinase signaling221， RAGE 

activation is also associated with induction of inducible nitric oxide synthase (iNOS)， nuclear 

factor (NF) kB activation， and Bcl-2 production321. NFkB activation is associated with HMGBl-

dependent chemotaxis331. 

HMGBl and angiogenesis 

Intracellular signaling pathways of RAGE induce vascular endothelial cell growth factor 

(VEGF) expression and activate NF】kBin vascular endothelial cells341. Activated RAGE 

induces VEGF expression transcriptionally through activation of NFkB， AP-l， and hypoxia-

inducible factor (HIF)同la34，351， which is also associated with complications in diabetes， such as 

diabetic retinopathy361. There is a difference of VEGF induction between AGE and HMGBF61. 

AGE】BSAhas a more pronounced effect on VEGF expression than HMGBl in colorectal 

cancer cell lines. In our studies， HMGBl induced the secretion of VEGF but not that of 

VEGF-C in human oral squamous cell carcinoma (OSCC) cell lines371. VEGF】Cand VEGF-D 

are associated with lymph node metastasis381. Differential induction of VEGF from VEGF-C 

through activation of RAGE by HMGBl may explain why RAGE expression is not 

associated with lymphangiogenesis. Lymph node metastasis of cancer is strongly associated 

with lymphangiogenesis391. 

HMGBl in anti-cancer immunity 

HMGBl is associated with a significant reduction of intratumoral macrophage infiltration 

in metastatic colon cancer40I. HMGBl induces growth inhibition in rat peritoneal 

macrophages， U937 human monocytic cells， and human alveolar macrophages， and induces 

apoptotic death with phosphorylation of ]NK and Rac1， and upregulation of caspase悶3and 

caspase-941， 421. ]NK is associated with apoptotic signals transmitted by Rac1/Cdc4229， 30， 431. 

Tumor-associated macrophages also have anti-cancer effects441. In clinical studies， colon 

cancer patients with high】levelmacrophage infiltration show less invasion andmetastasis 

than those with low-level macrophage infiltration451. Depletion of tumor【infiltra ting 

macrophages is closely associated with advanced stages of human colon cancer and with 

metastatic ability in a mouse colon cancer mode1401. Dukes B CRC cases with macrophage-

cancer cell contact were found， whereas Dukes C cases showed no such contact. HMGBl 

expression is associated with macrophage depletion in colon cancer tissues40I. 

Lymph sinus macrophages and liver Kupffer cells (KCs) participate in the immune 

response of the organs against metastatic cancer cells. Sinus macrophages and KCs mediate 

the phagocytosis of cancer cells attached to the sinus wall in order to inhibit their metastasis 

岨， 471目 InCRC cases， macrophage numbers in the regional lymph nodes are decreased in both 

non-metastasized and metastasized nodes in Dukes C cases， whereas macrophage numbers in 

Dukes B nodes are higher481. Nodal HMGBl concentration is higher in Dukes C nodes than 

that in Dukes B nodes; this is inversely correlated with macrophage numbers. Nodal HMGBl 

concentration is correlated with HMGBl concentration and lymph vessel density found in the 

primary tumors4SI. High concentration of HMGBl is reported in effusions from cancer 
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patients. These data indicate that HMGB1 secreted from primary tumors is delivered to the 

regional lymph nodes and decreases the number of macrophages to weaken the anti-

metastatic defense of the lymph nodes in patients with CRCs. 

In a nude mouse liver metastasis model， the cecal administration of HMGB1 decreased the 

number of KCs and increased the embedment of colon cancer cells in a dose-dependent 

manner491 • HMGB1 is secreted from primary tumors of colon cancer and delivered to the liver 

through portal blood flow. Following this， HMGB1 inhibits KCs to accelerate liver metastasis 

of colon cancer. In c1inical studies， higher HMGB1 concentrations are found in the primary 

tumors and metastatic foci， and fewer KCs are found in Dukes D cases than in Dukes C 

cases. The portal blood HMGB1 concentrations are higher in Dukes D cases than in Dukes C 

cases， and we have shown that the concentration of HMGB1 in the portョ1blood is strongly 

correlated with the concentration of HMGB1 in the primary tumors491. As a resu1t， HMGB1 

affects the host immunity in the metastasis同targetorgans in a humoral manner. Large 

amounts of secreted HMGB1 can affect remote organs such as the target organs of 

metastases from CRCs. 

Dendritic cells (DCs) play a crucial role in host immune response to various extrinsic 

microorganisms and also to cancer cells501 • Dendritic cell densities in primary tumors and 

metastatic tumors are suppressed51l. Indeed， nodal metastasis-positive colon cancer cases 

show higher 1品1GB1concentrations in lymph nodes and primary tumor tissues， and fewer 

dendritic cell n山nbers421 • HMGB1 produced by colon cancer cells resulted in a suppression of 

nodal dendritic cells to attenuate host anti-cancer immunity. HMGB1 results in activation of 

monocytes and dendritic cells; however， high concentrations of HMGB1 resu1t in a death 

signal to dendritic cells， as found on macrophages421 • Mouse peritoneal macrophage-derived 

dendritic cells (PMDDCs) treated with HMGB1 show a decrease in cell number in a dose回

dependent manner. HMGB1-treated PMDDCs show apoptosis and increased levels of 

phosphorylated JNK， and intraperitoneal administration of HMGB1 decreased splenic 

dendritic cells in C57BL mice421 • 

HMGB1 may provide cancer cells with the advantages of cancer progression and 

suppression of host immunity; therefore， further巴xaminationof the role of HMGB1-induced 

macrophage apoptosis in cancer may p 

E日1GB1and anti-cancer drugs 

They bind with high affinity to specific structural distortions in the double helix such as 

synthetic four way junctions and adducts that ar巴 for加 edin DNA modified by the anti-

tumor drug cisplatinum and UV light52，日1，DNA bound HMGB1 plays a role in DNA repair 

providing drug resistance to platinum derivatives in cancer cells541， 

HMGB1 is passively secreted from necrotic cells. We confirmed that necrosis inducers， 

such as doxorubicin (DXR) increase HMGB1 concentration in the cu1tured medium. In 

contrast， apoptosis inducers， such as trichostatin A (TSA) do not increase HMGB1 in the 

cultured medium， In a mouse tumor model of bilateral scapular subcutaneous tumors， 

induction of necrosis at one tumor by DXR enhances growth of the contralateral tumor. In 

contrast， induction of apoptosis at one tumor by TSA does not affect growth of the 

contralateral tumor. Moreover， in mouse liver and lung metastasis models with one 
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subcutaneous tumor， induction of necrosis at the subcutaneous tumor by DXR increases 

metastasis to the liver and lung. The enhancement of metastasis is abrogated by 

administration of anti-HMGBl antibody. These findings suggest that HMGBl enhances 

growth of the remnant cancer cel1s to increase the tumor relapse and metastasis. The pro-

apoptotic but not pro-necrotic anιcancer drugs are needed to avoid HMGBl-induced cancer 

relapse and metastasis. 

Conclusion 

Resistance to anti-cancer drugs is provided primarily by abrogation of the 

pharmacological mechanism of the drugs. Mu1tiple drug resistance (MDR) gene product， P 

glycoprotein reduced intracel1ular drug concentration by pumping out the drug. Drug 

resistance is provided secondarily by enhancement of tumor survival and reduction of anti同

cancer immunity. 1品I[GBlaccelerates drug resistance of cancer cel1s by increase of DNA 

repair， suppression of anti-cancer immunity， and enhancement of survival and growth of 

cancer cel1s. In this context， HMGBl is a pivotal anti】cancerdrug resistant factor. To 

increase the efficacy of anti-cancer treatment， HMGBl is a relevant target. 
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